70 research outputs found

    The Impact of Mindlessness-Mindfulness on Information Processing

    Get PDF

    Quantum walks on two-dimensional grids with multiple marked locations

    Full text link
    The running time of a quantum walk search algorithm depends on both the structure of the search space (graph) and the configuration of marked locations. While the first dependence have been studied in a number of papers, the second dependence remains mostly unstudied. We study search by quantum walks on two-dimensional grid using the algorithm of Ambainis, Kempe and Rivosh [AKR05]. The original paper analyses one and two marked location cases only. We move beyond two marked locations and study the behaviour of the algorithm for an arbitrary configuration of marked locations. In this paper we prove two results showing the importance of how the marked locations are arranged. First, we present two placements of kk marked locations for which the number of steps of the algorithm differs by Ω(k)\Omega(\sqrt{k}) factor. Second, we present two configurations of kk and k\sqrt{k} marked locations having the same number of steps and probability to find a marked location

    Quantum walks can find a marked element on any graph

    Full text link
    We solve an open problem by constructing quantum walks that not only detect but also find marked vertices in a graph. In the case when the marked set MM consists of a single vertex, the number of steps of the quantum walk is quadratically smaller than the classical hitting time HT(P,M)HT(P,M) of any reversible random walk PP on the graph. In the case of multiple marked elements, the number of steps is given in terms of a related quantity HT+(P,M)HT^+(\mathit{P,M}) which we call extended hitting time. Our approach is new, simpler and more general than previous ones. We introduce a notion of interpolation between the random walk PP and the absorbing walk PP', whose marked states are absorbing. Then our quantum walk is simply the quantum analogue of this interpolation. Contrary to previous approaches, our results remain valid when the random walk PP is not state-transitive. We also provide algorithms in the cases when only approximations or bounds on parameters pMp_M (the probability of picking a marked vertex from the stationary distribution) and HT+(P,M)HT^+(\mathit{P,M}) are known.Comment: 50 page

    Hitting time for quantum walks on the hypercube

    Full text link
    Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. To be analogous to the hitting time for a classical walk, the quantum hitting time must involve repeated measurements as well as unitary evolution. We derive an expression for hitting time using superoperators, and numerically evaluate it for the discrete walk on the hypercube. The values found are compared to other analogues of hitting time suggested in earlier work. The dependence of hitting times on the type of unitary ``coin'' is examined, and we give an example of an initial state and coin which gives an infinite hitting time for a quantum walk. Such infinite hitting times require destructive interference, and are not observed classically. Finally, we look at distortions of the hypercube, and observe that a loss of symmetry in the hypercube increases the hitting time. Symmetry seems to play an important role in both dramatic speed-ups and slow-downs of quantum walks.Comment: 8 pages in RevTeX format, four figures in EPS forma

    Non-Markovian dynamics of a qubit coupled to an Ising spin bath

    Full text link
    We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations describing the dynamics of the system qubit, in comparison to the exact solution. We find that the time-convolutionless master equation performs particularly well up to fourth order in the system-bath coupling constant, in comparison to the Nakajima-Zwanzig master equation. Markovian approaches fare poorly due to the infinite bath correlation time in this model. A recently proposed post-Markovian master equation performs comparably to the time-convolutionless master equation for a properly chosen memory kernel, and outperforms all the approximation methods considered here at long times. Our findings shed light on the applicability of master equations to the description of reduced system dynamics in the presence of spin-baths.Comment: 17 pages, 16 figure

    Hitting time for the continuous quantum walk

    Full text link
    We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate λ\lambda. From this definition we derive an explicit formula for the hitting time, and explore its dependence on the measurement rate. As the measurement rate goes to either 0 or infinity the hitting time diverges; the first divergence reflects the weakness of the measurement, while the second limit results from the Quantum Zeno effect. Continuous-time quantum walks, like discrete-time quantum walks but unlike classical random walks, can have infinite hitting times. We present several conditions for existence of infinite hitting times, and discuss the connection between infinite hitting times and graph symmetry.Comment: 12 pages, 1figur

    Ergodicity breaking in a model showing many-body localization

    Full text link
    We study the breaking of ergodicity measured in terms of return probability in the evolution of a quantum state of a spin chain. In the non ergodic phase a quantum state evolves in a much smaller fraction of the Hilbert space than would be allowed by the conservation of extensive observables. By the anomalous scaling of the participation ratios with system size we are led to consider the distribution of the wave function coefficients, a standard observable in modern studies of Anderson localization. We finally present a criterion for the identification of the ergodicity breaking (many-body localization) transition based on these distributions which is quite robust and well suited for numerical investigations of a broad class of problems.Comment: 5 pages, 5 figures, final versio

    Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice.

    Get PDF
    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology

    Quantum walks on quotient graphs

    Get PDF
    A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup used to construct it. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A {\bf 74}, 042334 (2006)] that the hitting time can be infinite. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with fast hitting times correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speed-up.Comment: 18 pages, 7 figures in EPS forma

    Quantum walks with infinite hitting times

    Get PDF
    Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of graphs with infinite hitting times for any choice of coin. Hitting times are not very well-defined for continuous time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continuous time case as well.Comment: 28 pages, 3 figures in EPS forma
    corecore