2,341 research outputs found

    Antibiotic Susceptibility of Black-Pigmented \u3cem\u3eBacteroides\u3c/em\u3e Isolates from the Human Oral Cavity

    Get PDF
    The minimal inhibitory concentrations of penicillin and six other antibiotics were determined for 66 oral black-pigmented Bacteroides isolates by using the National Committee for Clinical Laboratory Standards proposed standard agar dilution technique. These results plus iodometric determination of β-lactamase activity showed that oral isolates of black-pigmented Bacteroides are remaining relatively susceptible to commonly used antibiotics

    Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    Full text link
    Long-lived alpha and beta emitters in the 222^{222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the BetaCage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ~20×\times reduction at its output, from 7.47±\pm0.56 to 0.37±\pm0.12 Bq/m3^3, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m3^3.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    Status of BetaCage: an Ultra-sensitive Screener for Surface Contamination

    Get PDF
    BetaCage, a gaseous neon time-projection chamber, has been proposed as a viable screener for emitters of low-energy alphas and electrons to which commercial radioactivity counting techniques are insensitive. Using radiopure materials for construction, active and passive shielding from extrinsic backgrounds, large counting area and minimal detector mass, BetaCage will be able to achieve sensitivities of 10^(−5) counts keV^(−1) kg^(−1) day^(−1) in a few days of running time. We report on progress in prototype development work since the last meeting of this workshop

    Stabilization of the alleged bishomoromatic bicyclo[3.2.1]octa-2,6-dienyl anion by counterion interactions and by hyperconjugation

    Get PDF
    Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution

    The BetaCage, an ultra-sensitive screener for surface contamination

    Get PDF
    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m2^2-day and 0.1 alphas per m2^2-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95×\times95 cm2^2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    Large angle magnetization dynamics measured by time-resolved ferromagnetic resonance

    Full text link
    A time-resolved ferromagnetic resonance technique was used to investigate the magnetization dynamics of a 10 nm thin Permalloy film. The experiment consisted of a sequence of magnetic field pulses at a repetition rate equal to the magnetic systems resonance frequency. We compared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The results for damping and frequency response obtained by these two different methods coincide in the limit of a small angle excitation. However, when applying large amplitude field pulses, the magnetization had a non-linear response. We speculate that one possible cause of the nonlinearity is related to self-amplification of incoherence, known as the Suhl instabilities.Comment: 23 pages, 8 figures, submitted to PR

    Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery.

    Get PDF
    The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 μM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = -10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10-141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10-6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies
    corecore