57 research outputs found
Laser-induced nonsequential double ionization: kinematic constraints for the recollision-excitation-tunneling mechanism
We investigate the physical processes in which an electron, upon return to
its parent ion, promotes a second electron to an excited state, from which it
subsequently tunnels. Employing the strong-field approximation and saddle-point
methods, we perform a detailed analysis of the dynamics of the two electrons,
in terms of quantum orbits, and delimit constraints for their momentum
components parallel to the laser-field polarization. The kinetic energy of the
first electron, upon return, exhibits a cutoff slightly lower than ,
where is the ponderomotive energy, as in rescattered above-threshold
ionization (ATI). The second electron leaves the excited state in a direct
ATI-like process, with the maximal energy of . We also compute
electron-momentum distributions, whose maxima agree with our estimates and with
other methods.Comment: 13 pages, 4 figure
Pathways to double ionization of atoms in strong fields
We discuss the final stages of double ionization of atoms in a strong
linearly polarized laser field within a classical model. We propose that all
trajectories leading to non-sequential double ionization pass close to a saddle
in phase space which we identify and characterize. The saddle lies in a two
degree of freedom subspace of symmetrically escaping electrons. The
distribution of longitudinal momenta of ions as calculated within the subspace
shows the double hump structure observed in experiments. Including a symmetric
bending mode of the electrons allows us to reproduce the transverse ion
momenta. We discuss also a path to sequential ionization and show that it does
not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version
accepted for publication in Phys. Rev.
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Correlation dynamics between electrons and ions in the fragmentation of D molecules by short laser pulses
We studied the recollision dynamics between the electrons and D ions
following the tunneling ionization of D molecules in an intense short pulse
laser field. The returning electron collisionally excites the D ion to
excited electronic states from there D can dissociate or be further
ionized by the laser field, resulting in D + D or D + D,
respectively. We modeled the fragmentation dynamics and calculated the
resulting kinetic energy spectrum of D to compare with recent experiments.
Since the recollision time is locked to the tunneling ionization time which
occurs only within fraction of an optical cycle, the peaks in the D kinetic
energy spectra provides a measure of the time when the recollision occurs. This
collision dynamics forms the basis of the molecular clock where the clock can
be read with attosecond precision, as first proposed by Corkum and coworkers.
By analyzing each of the elementary processes leading to the fragmentation
quantitatively, we identified how the molecular clock is to be read from the
measured kinetic energy spectra of D and what laser parameters be used in
order to measure the clock more accurately.Comment: 13 pages with 14 figure
One and two-center processes in high-order harmonic generation in diatomic molecules: influence of the internuclear separation
We analyze the influence of different recombination scenarios, involving one
or two centers, on high-order harmonic generation (HHG) in diatomic molecules,
for different values of the internuclear separation. We work within the
strong-field approximation, and employ modified saddle-point equations, in
which the structure of the molecule is incorporated. We find that the
two-center interference patterns, attributed to high-order harmonic emission at
spatially separated centers, are formed by the quantum interference of the
orbits starting at a center and finishing at a different center in the molecule with those starting and ending at a same center
Within our framework, we also show that contributions starting at different
centers exhibit different orders of magnitude, due to the influence of
additional potential-energy shifts. This holds even for small internuclear
distances. Similar results can also be obtained by considering single-atom
saddle-point equations and an adequate choice of molecular prefactors.Comment: 8 pages, 5 figure
Resonant enhancements of high-order harmonic generation
Solving the one-dimensional time-dependent Schr\"odinger equation for simple
model potentials, we investigate resonance-enhanced high-order harmonic
generation, with emphasis on the physical mechanism of the enhancement. By
truncating a long-range potential, we investigate the significance of the
long-range tail, the Rydberg series, and the existence of highly excited states
for the enhancements in question. We conclude that the channel closings typical
of a short-range or zero-range potential are capable of generating essentially
the same effects.Comment: 7 pages revtex, 4 figures (ps files
Resonant Structures in the Low-Energy Electron Continuum for Single Ionization of Atoms in the Tunneling Regime
We present results of high-resolution experiments on single ionization of He,
Ne and Ar by ultra-short (25 fs, 6 fs) 795 nm laser pulses at intensities
0.15-2.0x10^15 W/cm^2. We show that the ATI-like pattern can survive deep in
the tunneling regime and that the atomic structure plays an important role in
the formation of the low-energy photoelectron spectra even at high intensities.
The absence of ponderomotive shifts, the splitting of the peaks and their
degeneration for few-cycle pulses indicate that the observed structures
originate from a resonant process.Comment: 11 pages, 3 figure
- âŠ