41 research outputs found

    Levosimendan may improve survival in patients requiring mechanical assist devices for post-cardiotomy heart failure

    Get PDF
    INTRODUCTION: Most case series suggest that less than half of the patients receiving a mechanical cardiac assist device as a bridge to recovery due to severe post-cardiotomy heart failure survive to hospital discharge. Levosimendan is the only inotropic substance known to improve medium term survival in patients suffering from severe heart failure. METHODS: This retrospective analysis covers our single centre experience. Between July 2000 and December 2004, 41 consecutive patients were treated for this complication. Of these, 38 patients are included in this retrospective analysis as 3 patients died in the operating room. Levosimendan was added to the treatment protocol for the last nine patients. RESULTS: Of 29 patients treated without levosimendan, 20 could be weaned off the device, 9 survived to intensive care unit discharge, 7 left hospital alive and 3 survived 180 days. All 9 patients treated with levosimendan could be weaned, 8 were discharged alive from ICU and hospital, and 7 lived 180 days after surgery (p < 0.002 for 180 day survival). Plasma lactate after explantation of the device was significantly lower (p = 0.002), as were epinephrine doses. Time spent on renal replacement therapy was significantly shorter (p = 0.023). CONCLUSION: Levosimendan seems to improve medium term survival in patients failing to wean off cardiopulmonary bypass and requiring cardiac assist devices as a bridge to recovery. This retrospective analysis justifies prospective randomised investigations of levosimendan in this group of patients

    Atypical vessels as an early sign of intracardiac myxoma?

    Get PDF
    We report on a woman with previously unknown left atrial myxoma, who underwent percutaneous coronary intervention. 45 months after the initial coronary angiography, echocardiography demonstrated a large atrial myxoma, which was not seen echocardiographically before. The retrospective analysis of the pre-intervention coronary angiography revealed atypical vessels in the atrial septum, which are interpreted as early signs of myxoma

    Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering

    Full text link
    corecore