480 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Asymptotic Expansions for the Conditional Sojourn Time Distribution in the M/M/1M/M/1-PS Queue

    Full text link
    We consider the M/M/1M/M/1 queue with processor sharing. We study the conditional sojourn time distribution, conditioned on the customer's service requirement, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. The asymptotic formulas relate to, and extend, some results of Morrison \cite{MO} and Flatto \cite{FL}.Comment: 30 pages, 3 figures and 1 tabl

    Has The Era Of Slow Growth For Prescription Drug Spending Ended?

    Get PDF
    In the period 2005–13 the US prescription drug market grew at an average annual pace of only 1.8 percent in real terms on an invoice price basis (that is, in constant dollars and before manufacturers’ rebates and discounts). But the growth rate increased dramatically in 2014, when the market expanded by 11.5 percent—which raised questions about future trends. We determined the impact of manufacturers’ rebates and discounts on prices and identified the underlying factors likely to influence prescription spending over the next decade. These include a strengthening of the innovation pipeline; consolidation among buyers such as wholesalers, pharmacy benefit managers, and health insurers; and reduced incidence of patent expirations, which means that fewer less costly generic drug substitutes will enter the market than in the recent past. While various forecasts indicate that pharmaceutical spending growth will moderate from its 2014 level, the business tension between buyers and sellers could play out in many different ways. This suggests that future spending trends remain highly uncertain.United States. National Institutes of Health (NIANIH/R01AG043560

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Measurement-Adaptive Cellular Random Access Protocols

    Get PDF
    This work considers a single-cell random access channel (RACH) in cellular wireless networks. Communications over RACH take place when users try to connect to a base station during a handover or when establishing a new connection. Within the framework of Self-Organizing Networks (SONs), the system should self- adapt to dynamically changing environments (channel fading, mobility, etc.) without human intervention. For the performance improvement of the RACH procedure, we aim here at maximizing throughput or alternatively minimizing the user dropping rate. In the context of SON, we propose protocols which exploit information from measurements and user reports in order to estimate current values of the system unknowns and broadcast global action-related values to all users. The protocols suggest an optimal pair of user actions (transmission power and back-off probability) found by minimizing the drift of a certain function. Numerical results illustrate considerable benefits of the dropping rate, at a very low or even zero cost in power expenditure and delay, as well as the fast adaptability of the protocols to environment changes. Although the proposed protocol is designed to minimize primarily the amount of discarded users per cell, our framework allows for other variations (power or delay minimization) as well.Comment: 31 pages, 13 figures, 3 tables. Springer Wireless Networks 201

    SRPT Scheduling for Web Servers

    Get PDF
    This note briey summarizes some results from two papers: [4] and [23]. These papers pose the following question: Is it possible to reduce the expected response time of every request at a web server, simply by changing the order in which we schedule the requests? In [4] we approach this question analytically via an M/G/1 queue. In [23] we approach the same question via implementation involving an Apache web server running on Linux

    Trend-based analysis of a population model of the AKAP scaffold protein

    Get PDF
    We formalise a continuous-time Markov chain with multi-dimensional discrete state space model of the AKAP scaffold protein as a crosstalk mediator between two biochemical signalling pathways. The analysis by temporal properties of the AKAP model requires reasoning about whether the counts of individuals of the same type (species) are increasing or decreasing. For this purpose we propose the concept of stochastic trends based on formulating the probabilities of transitions that increase (resp. decrease) the counts of individuals of the same type, and express these probabilities as formulae such that the state space of the model is not altered. We define a number of stochastic trend formulae (e.g. weakly increasing, strictly increasing, weakly decreasing, etc.) and use them to extend the set of state formulae of Continuous Stochastic Logic. We show how stochastic trends can be implemented in a guarded-command style specification language for transition systems. We illustrate the application of stochastic trends with numerous small examples and then we analyse the AKAP model in order to characterise and show causality and pulsating behaviours in this biochemical system

    Asymptotic Expansions for the Sojourn Time Distribution in the M/G/1M/G/1-PS Queue

    Full text link
    We consider the M/G/1M/G/1 queue with a processor sharing server. We study the conditional sojourn time distribution, conditioned on the customer's service requirement, as well as the unconditional distribution, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. Our results demonstrate the possible tail behaviors of the unconditional distribution, which was previously known in the cases G=MG=M and G=DG=D (where it is purely exponential). We assume that the service density decays at least exponentially fast. We use various methods for the asymptotic expansion of integrals, such as the Laplace and saddle point methods.Comment: 45 page

    Superprocesses as models for information dissemination in the Future Internet

    Full text link
    Future Internet will be composed by a tremendous number of potentially interconnected people and devices, offering a variety of services, applications and communication opportunities. In particular, short-range wireless communications, which are available on almost all portable devices, will enable the formation of the largest cloud of interconnected, smart computing devices mankind has ever dreamed about: the Proximate Internet. In this paper, we consider superprocesses, more specifically super Brownian motion, as a suitable mathematical model to analyse a basic problem of information dissemination arising in the context of Proximate Internet. The proposed model provides a promising analytical framework to both study theoretical properties related to the information dissemination process and to devise efficient and reliable simulation schemes for very large systems
    • …
    corecore