26 research outputs found

    JCE

    No full text

    Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase

    No full text
    (+)-Pulegone is a central intermediate in the biosynthesis of (-)-menthol, the most significant component of peppermint essential oil. Depending on environmental conditions, this branch point metabolite may be reduced to (-)-menthone en route to menthol, by pulegone reductase (PR), or oxidized to (+)-menthofuran, by menthofuran synthase (MFS). To elucidate regulation of pulegone metabolism, we modified the expression of mfs under control of the CaMV 35S promoter in transformed peppermint plants. Overexpression and cosuppression of mfs resulted in the respective increase or decrease in the production of menthofuran, indicating that the control of MFS resides primarily at the level of transcription. Significantly, in both WT peppermint as well as in all transformed plants, the flux of (+)-pulegone through PR correlated negatively with the essential oil content of menthofuran, such that menthofuran, and pulegone increased, or decreased, in concert. These results suggested that menthofuran itself might influence the reduction of pulegone. Although (+)-menthofuran did not inhibit (+)-PR activity, stem feeding with menthofuran selectively decreased pr transcript levels in immature leaves, thereby accounting for decreased reductase activity and increased pulegone content. These data demonstrate that the metabolic fate of (+)-pulegone is controlled through transcriptional regulation of mfs and that menthofuran, either directly or indirectly, influences this process by down-regulating transcription from pr and/or decreasing pr message stability. The ability to reduce both menthofuran and pulegone levels is of commercial significance in improving essential oil quality; however, the physiological rationale for such complex regulation is presently unclear

    Teaching chemistry with analogies around the world: Views of teachers from four countries

    Full text link
    © 2018 American Chemical Society. This multinational study explores the experience of teachers regarding the use of analogies in high school chemistry classes. The opinions of one hundred and forty (N=140) high school teachers from the countries of Australia, Thailand, the United States of America, and Turkey were collected with a questionnaire developed by the researchers. In the questionnaire, several themes were included: frequency and purpose of using analogies, concepts for which analogies are employed, favorite analogies, features of analogies considered, materials accompanied with analogies, and evaluation of analogies. These themes conveyed the similarities and differences among the countries. Analogies were widely used for unobservable chemical phenomena by teachers from all the countries. The teachers pay attention to students' attributes and experiences while selecting the right analogy in teaching

    Carbon - Nitrogen interactions in forest ecosystems. Final report

    Get PDF
    Databases on carbon (C) and nitrogen (N) fluxes and pools in European forests were compiled for 400 sites and explored thoroughly to create empirical models that predict C accumulation and N retention/nitrate leaching from N input, climate, and ecosystem characteristics. For nitrate leaching, analyses show that there is a threshold N deposition of 8-10 kg N/ha/yr below which almost no leaching occurs. The important parameters that determine N leaching (and thus N retention) are: N deposition, the organic layer carbon to nitrogen ratio (C/N ratio) and annual temperature. At low C/N ratios (below 23) N input determines N leaching. At higher C/N ratios both N input and temperature are important. Adding more sites throughout the project did not change these relationships and they were robust in validation tests. Based on a ‘N balance’ approach, estimates of soil C sequestration rates were calculated by multiplying soil N retention with soil C/N ratio. The mean for European forest with data was 190 kg C/ha/yr, but these have a geographical bias towards central Europe where the estimated C sequestration rates are highest. An unbiased but more uncertain extrapolation to Europe had an overall mean of 70 kg C/ha/yr. Estimates of C and N sequestration rates in the organic layer of forest soils have been calculated for specific sites based on the ‘limit value’ concept that uses data from studies of the decomposition of organic matter. The method was further validated in CNTER. This method can be upscaled to Europe, and for 150 sites for which data are sufficient, a mean of 400 kg C/ha/yr was obtained. The method has also been applied for the whole of Sweden, where the range in estimated soil C sequestration was 40-400 kg C/ha/yr. Estimates obtained by the N-balance approach throughout Sweden were below those for the limit value but followed the same spatial gradients. Estimates of C sequestration in the organic layer (using the limit value method) are usually higher than those using the N balance approach for two reasons: i) unlike the N balance method, the limit value approach cannot account for negative C sequestration (i.e. a C loss), and ii) the limit value approach estimates C accumulation in the forest floor (which has the highest C accumulation rate of the soil) whereas the N balance approach accounts for the whole soil profile. This is most noticeable after land use change (i.e. afforestation) where an organic layer accumulates, but where C may be lost from the mineral soil. Efforts on modelling C sequestration have shown that traditional concepts for decomposition assuming a steady state at some point yield too low C accumulation. We have further made regional and European estimates of the present C sequestration rates in forest soils using several methods. The estimates have consistently shown that C sequestration rates in soil are low: 0-400 kg C/ha/yr. A probable mean is c. 100 kg C/ha/yr. Converted to a European scale this is 13 Mt C/yr, where trees additionally have a net accumulation in the biomass of c. 70 Mt C/yr. Our estimates are much lower than estimates published earlier based on other approaches. For the CNTER estimates it is assumed that C accumulates with N i.e. that soil C/N ratios do not increase. With the elevated N deposition in Europe, the soil C/N ratios are more likely decreasing, thus C-sequestration rates are probably even lower than we estimated. We find it very important to arrive at well-established soil C sequestration numbers, since the size of the possible biological C sink in Europe is uncertain and under debate. We will seek to continue to improve on our estimates of soil C sequestration rates. To gain insight into C and N interactions, soil and vegetation from long-term field experiments using additions of stable N isotopes have been re-sampled. After ten years, most of the N applied over one year is still present in the soil in amounts not very different from those measured after 1-3 yrs. These experiments allow for a thorough testing and validation of a process model that predicts the fate of N in the ecosystem. When applied to multiple sites we gain an insight in the fate of N that will allow calculation of C accumulation and fluxes in the systems, which cannot be obtained in other ways. Tree species trials, plantation mosaics and felling experiments were re-sampled to gain insight into forest management options (tree species, age and felling regime) for increasing C sequestration and protecting downstream water against eutrophication. The indicators sampled were concentrations of nitrate, DOC and pH in seepage water below rooting zone, forest floor and upper mineral soil C and N pools and CN ratio. The impact of felling was increased with decreasing depth of the organic layer at humid temperate climate. There was no consistent effect of tree species on N leaching between regions in these trials. On a cross-European basis, conifer forests receiving inorganic N in throughfall from 10-25 kg N ha-1 y-1 appear to have enhanced N leaching over hardwood forests receiving the same amount of N deposition
    corecore