45 research outputs found

    Effect of Vitamin D Supplementation on Markers of Vascular Function: A Systematic Review and Individual Participant Meta- Analysis

    Get PDF
    Background-—Low 25-hydroxyvitamin D levels are associated with an increased risk of cardiovascular events, but the effect of vitamin D supplementation on markers of vascular function associated with major adverse cardiovascular events is unclear. Methods and Results-—We conducted a systematic review and individual participant meta-analysis to examine the effect of vitamin D supplementation on flow-mediated dilatation of the brachial artery, pulse wave velocity, augmentation index, central blood pressure, microvascular function, and reactive hyperemia index. MEDLINE, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials, and http://www.ClinicalTrials.gov were searched until the end of 2016 without language restrictions. Placebo-controlled randomized trials of at least4 weeks duration were included. Individual participant data were sought from investigators on included trials. Trial-level metaanalysis was performed using random-effects models; individual participant meta-analyses used a 2-stage analytic strategy, examining effects in prespecified subgroups. 31trials (2751 participants) were included; 29 trials (2641participants) contributed data to trial-level meta-analysis, and24trials (2051 participants) contributed to individual-participant analyses. VitaminD3daily dose equivalents ranged from 900 to 5000 IU; duration was 4 weeks to12 months. Trial-level meta-analysis showed no significant effect of supplementation on macrovascularmeasures(flow-mediateddilatation,0.37%[95%confidenceinterval, 0.23to0.97]; carotid-femoralpulsewavevelocity, 0.00 m/s [95% confidence interval, 0.36 to 0.37]); similar results were obtained from individual participant data. Microvascular function showed a modest improvement in trial-level data only. No consistent benefit was observed in subgroup analyses or between different vitamin D analogues. Conclusions-—Vitamin D supplementation had no significant effect on most markers of vascular function in this analysis

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    Pharmacological management of X‐linked hypophosphataemia

    No full text
    The most common heritable disorder of renal phosphate wasting, X‐linked hypophosphataemia (XLH), was discovered to be caused by inactivating mutations in the phosphate regulating gene with homology to endopeptidases on the X‐chromosome (PHEX) gene in 1995. Although the exact molecular mechanisms by which PHEX mutations cause disturbed phosphate handling in XLH remain unknown, focus for novel therapies has more recently been based upon the finding that the bone‐produced phosphaturic hormone fibroblast growth factor‐23 is elevated in XLH patient plasma. Previous treatment strategies for XLH were based upon phosphate repletion plus active vitamin D analogues, which are difficult to manage, fail to address the primary pathogenesis of the disease, and can have deleterious side effects. A novel therapy for XLH directly targeting fibroblast growth factor‐23 via a humanized monoclonal antibody (burosumab‐twza/CRYSVITA, henceforth referred to just as burosumab) has emerged as an effective, and recently approved, pharmacological treatment for both children and adults. This review will provide an overview of the clinical manifestations of XLH, the molecular pathophysiology, and summarize its current treatment

    Identification of a novel mutation in an Indian patient with CAII deficiency syndrome

    No full text
    Carbonic anhydrase II (CAII) deficiency syndrome characterized by osteopetrosis (OP), renal tubular acidosis (RTA), and cerebral calcifications is caused by mutations in the carbonic anhydrase 2 (CA2) gene. Severity of this disorder varies depending on the nature of the mutation and its effect on the protein. We present here, the clinical and radiographic details along with, results of mutational analysis of the CA2 gene in an individual clinically diagnosed with renal tubular acidosis, osteopetrosis and mental retardation and his family members to establish genotype-phenotype correlation. A novel homozygous deletion mutation c.251delT was seen in the patient resulting in a frameshift and a premature stop codon at amino acid position 90 generating a truncated protein leading to a complete loss of function and a consequential deficiency of the enzyme making this a pathogenic mutation. Confirmation of clinical diagnosis by molecular methods is essential as the clinical features of the CAII deficiency syndrome are similar to other forms of OP but the treatment modalities are different. Genetic confirmation of the diagnosis at an early age leads to the timely institution of therapy improving the growth potential, reduces other complications like fractures, and aids in providing prenatal testing and genetic counseling to the parents planning a pregnancy

    Identification of a novel mutation in an Indian patient with CAII deficiency syndrome

    No full text
    Carbonic anhydrase II (CAII) deficiency syndrome characterized by osteopetrosis (OP), renal tubular acidosis (RTA), and cerebral calcifications is caused by mutations in the carbonic anhydrase 2 (CA2) gene. Severity of this disorder varies depending on the nature of the mutation and its effect on the protein. We present here, the clinical and radiographic details along with, results of mutational analysis of the CA2 gene in an individual clinically diagnosed with renal tubular acidosis, osteopetrosis and mental retardation and his family members to establish genotype-phenotype correlation. A novel homozygous deletion mutation c.251delT was seen in the patient resulting in a frameshift and a premature stop codon at amino acid position 90 generating a truncated protein leading to a complete loss of function and a consequential deficiency of the enzyme making this a pathogenic mutation. Confirmation of clinical diagnosis by molecular methods is essential as the clinical features of the CAII deficiency syndrome are similar to other forms of OP but the treatment modalities are different. Genetic confirmation of the diagnosis at an early age leads to the timely institution of therapy improving the growth potential, reduces other complications like fractures, and aids in providing prenatal testing and genetic counseling to the parents planning a pregnancy
    corecore