491 research outputs found
Local Operators in Massive Quantum Field Theories
Contribution to the proceedings of Schladming 1995. A review of the form
factor approach and its utilisation to determine the space of local operators
of integrable massive quantum theories is given. A few applications are
discussed.Comment: 6 pages, late
Notes on highest weight modules of the elliptic algebra
We discuss a construction of highest weight modules for the recently defined
elliptic algebra , and make several conjectures
concerning them. The modules are generated by the action of the components of
the operator on the highest weight vectors. We introduce the vertex
operators and through their commutation relations with the
-operator. We present ordering rules for the - and -operators and
find an upper bound for the number of linearly independent vectors generated by
them, which agrees with the known characters of -modules.Comment: Nonstandard macro package eliminate
Discrete non-commutative integrability: the proof of a conjecture by M. Kontsevich
We prove a conjecture of Kontsevich regarding the solutions of rank two
recursion relations for non-commutative variables which, in the commutative
case, reduce to rank two cluster algebras of affine type. The conjecture states
that solutions are positive Laurent polynomials in the initial cluster
variables. We prove this by use of a non-commutative version of the path models
which we used for the commutative case.Comment: 17 pages, 2 figure
- …