2,711 research outputs found

    Renormalization Group Treatment of Nonrenormalizable Interactions

    Full text link
    The structure of the UV divergencies in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergencies (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. Explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the na\"ive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms.Comment: LaTex, 11 page

    Determination of the observation conditions of celestial bodies with the aid of the DISPO system

    Get PDF
    The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86

    Renormalizable 1/N_f Expansion for Field Theories in Extra Dimensions

    Full text link
    We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional field theories. It is based on 1/Nf1/N_f-expansion and results in a logarithmically divergent perturbation theory in arbitrary high space-time dimension. First, we consider a simple example of NN-component scalar filed theory and then extend this approach to Abelian and non-Abelian gauge theories with NfN_f fermions. In the latter case, due to self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The resulting effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free behaviour depending on the dimension of space-time. The original dimensionful coupling plays a role of a mass and is also logarithmically renormalized. We analyze also the analytical properties of a resulting theory and demonstrate that in general it acquires several ghost states with negative and/or complex masses. In the former case, the ghost state can be removed by a proper choice of the coupling. As for the states with complex conjugated masses, their contribution to physical amplitudes cancels so that the theory appears to be unitary.Comment: 32 pages, 20 figure

    Thermal conductivity of single crystalline MgB_2

    Full text link
    The ab-plane thermal conductivity κ\kappa of single-crystalline hexagonal MgB_2 has been measured as a function of magnetic field H with orientations both parallel and perpendicular to the c-axis and at temperatures between 0.5 and 300 K. In the mixed state, κ(H)\kappa(H) measured at constant temperatures reveals features that are not typical for common type-II superconductors. The observed behavior may be associated with the field-induced reduction of two superconducting energy gaps, significantly different in magnitude. A nonlinear temperature dependence of the electronic thermal conductivity is observed in the field-induced normal state at low temperatures. This behavior is at variance with the Wiedemann-Franz law, and suggests an unexpected instability of the electronic subsystem in the normal state at T ~ 1 K.Comment: 9 pages,7 figure
    corecore