424 research outputs found
Magnetization of small lead particles
The magnetization of an ensemble of isolated lead grains of sizes ranging
from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner
effect with lowering of the grain size is observed for the smaller grains. This
is a direct observation by magnetization measurement of the occurrence of a
critical particle size for superconductivity, which is consistent with
Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR
Recommended from our members
Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism.
Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury
Recommended from our members
The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future.
The respiratory system, which includes the trachea, airways, and distal alveoli, is a complex multi-cellular organ that intimately links with the cardiovascular system to accomplish gas exchange. In this review and as members of the NIH/NHLBI-supported Progenitor Cell Translational Consortium, we discuss key aspects of lung repair and regeneration. We focus on the cellular compositions within functional niches, cell-cell signaling in homeostatic health, the responses to injury, and new methods to study lung repair and regeneration. We also provide future directions for an improved understanding of the cell biology of the respiratory system, as well as new therapeutic avenues
Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material
Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species
Measure representation and multifractal analysis of complete genomes
This paper introduces the notion of measure representation of DNA sequences.
Spectral analysis and multifractal analysis are then performed on the measure
representations of a large number of complete genomes. The main aim of this
paper is to discuss the multifractal property of the measure representation and
the classification of bacteria. From the measure representations and the values
of the spectra and related curves, it is concluded that these
complete genomes are not random sequences. In fact, spectral analyses performed
indicate that these measure representations considered as time series, exhibit
strong long-range correlation. For substrings with length K=8, the
spectra of all organisms studied are multifractal-like and sufficiently smooth
for the curves to be meaningful. The curves of all bacteria
resemble a classical phase transition at a critical point. But the 'analogous'
phase transitions of chromosomes of non-bacteria organisms are different. Apart
from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked
specific heat function.Comment: 12 pages with 9 figures and 1 tabl
The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner
In Escherichia coli , DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA - dsbC - mutants have a number of phenotypes not exhibited by either dsbA - , dsbC - or dsbA - dsbD - mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage φ80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb - strains. dsbA - dsbC - mutants exhibit unique changes at the protein level that are not exhibited by dsbA - dsbD - mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/1/MMI_6030_sm_Tables_S1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/2/MMI_tables_s1-s4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/3/j.1365-2958.2007.06030.x.pd
The Monofunctional Catalase KatE of Xanthomonas axonopodis pv. citri Is Required for Full Virulence in Citrus Plants
BACKGROUND: Xanthomonas axonopodis pv. citri (Xac) is an obligate aerobic phytopathogen constantly exposed to hydrogen peroxide produced by normal aerobic respiration and by the plant defense response during plant-pathogen interactions. Four putative catalase genes have been identified in silico in the Xac genome, designated as katE, catB, srpA (monofunctional catalases) and katG (bifunctional catalase). METHODOLOGY/PRINCIPAL FINDINGS: Xac catalase activity was analyzed using native gel electrophoresis and semi-quantitative RT-PCR. We demonstrated that the catalase activity pattern was regulated in different growth stages displaying the highest levels during the stationary phase. KatE was the most active catalase in this phase of growth. At this stage cells were more resistant to hydrogen peroxide as was determined by the analysis of CFU after the exposition to different H(2)O(2) concentrations. In addition, Xac exhibited an adaptive response to hydrogen peroxide, displaying higher levels of catalase activity and H(2)O(2) resistance after treatment with sub-lethal concentrations of the oxidant. In the plant-like medium XVM2 the expression of KatE was strongly induced and in this medium Xac was more resistant to H(2)O(2). A XackatE mutant strain was constructed by insertional mutagenesis. We observed that catalase induction in stationary phase was lost meanwhile the adaptive response to peroxide was maintained in this mutant. Finally, the XackatE strain was assayed in planta during host plant interaction rendering a less aggressive phenotype with a minor canker formation. CONCLUSIONS: Our results confirmed that in contrast to other Xanthomonas species, Xac catalase-specific activity is induced during the stationary phase of growth in parallel with the bacterial resistance to peroxide challenge. Moreover, Xac catalases expression pattern is modified in response to any stimuli associated with the plant or the microenvironment it provides. The catalase KatE has been shown to have an important function for the colonization and survival of the bacterium in the citrus plant during the pathogenic process. Our work provides the first genetic evidence to support a monofunctional catalase as a virulence factor in Xac
Adoption of an innovation to repair aortic aneurysms at a Canadian hospital: a qualitative case study and evaluation
<p>Abstract</p> <p>Background</p> <p>Priority setting in health care is a challenge because demand for services exceeds available resources. The increasing demand for less invasive surgical procedures by patients, health care institutions and industry, places added pressure on surgeons to acquire the appropriate skills to adopt innovative procedures. Such innovations are often initiated and introduced by surgeons in the hospital setting. Decision-making processes for the adoption of surgical innovations in hospitals have not been well studied and a standard process for their introduction does not exist. The purpose of this study is to describe and evaluate the decision-making process for the adoption of a new technology for repair of abdominal aortic aneurysms (endovascular aneurysm repair [EVAR]) in an academic health sciences centre to better understand how decisions are made for the introduction of surgical innovations at the hospital level.</p> <p>Methods</p> <p>A qualitative case study of the decision to adopt EVAR was conducted using a modified thematic analysis of documents and semi-structured interviews. Accountability for Reasonableness was used as a conceptual framework for fairness in priority setting processes in health care organizations.</p> <p>Results</p> <p>There were two key decisions regarding EVAR: the decision to adopt the new technology in the hospital and the decision to stop hospital funding. The decision to adopt EVAR was based on perceived improved patient outcomes, safety, and the surgeons' desire to innovate. This decision involved very few stakeholders. The decision to stop funding of EVAR involved all key players and was based on criteria apparent to all those involved, including cost, evidence and hospital priorities. Limited internal communications were made prior to adopting the technology. There was no formal means to appeal the decisions made.</p> <p>Conclusion</p> <p>The analysis yielded recommendations for improving future decisions about the adoption of surgical innovations. ese empirical findings will be used with other case studies to help develop guidelines to help decision-makers adopt surgical innovations in Canadian hospitals.</p
- …