1,054 research outputs found

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials

    Full text link
    We study a ring cavity filled with a slab of a right-handed material and a slab of a left-handed material. Both layers are assumed to be nonlinear Kerr media. First, we derive a model for the propagation of light in a left-handed material. By constructing a mean-field model, we show that the sign of diffraction can be made either positive or negative in this resonator, depending on the thicknesses of the layers. Subsequently, we demonstrate that the dynamical behavior of the modulation instability is strongly affected by the sign of the diffraction coefficient. Finally, we study the dissipative structures in this resonator and reveal the predominance of a two-dimensional up-switching process over the formation of spatially periodic structures, leading to the truncation of the homogeneous hysteresis cycle.Comment: 8 pages, 5 figure

    Glueball calculations in large-N_c gauge theory

    Get PDF
    We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.Comment: 4 pages, 2 figures, uses macro boxedeps.tex, minor corrections in revised versio

    A New Basis Function Approach to 't Hooft-Bergknoff-Eller Equations

    Get PDF
    We analytically and numerically investigate the 't Hooft-Bergknoff-Eller equations, the lowest order mesonic Light-Front Tamm-Dancoff equations for U(N_C) and SU(N_C) gauge theories. We find the wavefunction can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest bound state. Its value is consistent with the precedent results.Comment: 16 pages, 3 figure

    Colour-Dielectric Gauge Theory on a Transverse Lattice

    Get PDF
    We investigate in some detail consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2+1-dimensional pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one effectively studies a 1+1-dimensional gauge theory coupled to matter in the adjoint representation. We study the structure of coupling constant space for our effective potential by comparing with the physical results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature. We employ a new hybrid DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian matrix elements, along with extrapolation in Tamm-Dancoff truncation, significantly reducing numerical errors. Finally we discuss, in light of our results, what further measurements and calculations could be made in order to systematically remove lattice spacing dependence from our effective potential a priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in revised versio

    Tube Model for Light-Front QCD

    Get PDF
    We propose the tube model as a first step in solving the bound state problem in light-front QCD. In this approach we neglect transverse variations of the fields, producing a model with 1+1 dimensional dynamics. We then solve the two, three, and four particle sectors of the model for the case of pure glue SU(3). We study convergence to the continuum limit and various properties of the spectrum.Comment: 29 page

    Mesons a in Collinear QCD Model

    Full text link
    A phenomenological model for the quark structure of mesons is considered. The model is based on the tube model for QCD, where all quanta with nonzero transverse momenta are neglected. In the limit that the mass term of the gluons goes to infinity, the model is equivalent to a combination of the 't Hooft and Gross-Neveu models and can be solved semi-analytically. The model has the properties of confinement, chiral symmetry breaking and asymptotic freedom and thus resembles QCD in three key respects. Spectra, distribution amplitudes and form factors of mesons are analyzed.Comment: final version, to appear in PR

    Variational Calculation of the Effective Action

    Get PDF
    An indication of spontaneous symmetry breaking is found in the two-dimensional λϕ4\lambda\phi^4 model, where attention is paid to the functional form of an effective action. An effective energy, which is an effective action for a static field, is obtained as a functional of the classical field from the ground state of the hamiltonian H[J]H[J] interacting with a constant external field. The energy and wavefunction of the ground state are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under antiperiodic boundary conditions. A field configuration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation in the J→0J\to 0 limit. It is shown that there exists a nonzero field configuration in the broken phase of Z2Z_2 symmetry because of a boundary effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two references adde
    • 

    corecore