18,054 research outputs found

    Mask-Less Crystalline Silicon Solar Cell (May 2009)

    Get PDF
    A mask-less crystalline silicon solar cell was made by using a surface texturing technique coupled with an oblique aluminum evaporation. To achieve this, trenches with a steep sidewall are mechanically grooved into the bulk silicon using the KS 775 Wafer Saw. More importantly, metal evaporation with the CVC evaporator at angles near parallel to the wafer surface allows deposition to occur along the side of the trenches creating the self-aligning front metal contacts. Of the four solar cells that made it through the processing, only one solar cell showed diode like 1-V characteristics. The dark conditions shows a diode 1-V where current doesn’t flow with a negative applied voltage and in the forward applied voltage, there is a turn on voltage around 0.6V, typical of a silicon diode. This is followed by an exponential gain in current. The n value of the diode is under dark conditions is 1.7. Under illuminated conditions, the I-V curve shows a dramatic negative current for voltages below 0.25V. This isn’t the I-V curve of a solar cell but it does show that this device is light sensitive. The other three solar cells made are resistors with resistances of 4 Ω, 2 Ω and 19.2 Ω for wafers 3, 4 and 5 respectively. The shorts on the solar cells are due to a nonuniformly coated N-250 spin on glass (SOG) for the n+ layer on the p type wafer. Air pockets remained in the trenches and kept certain spots on the wafer surface to remain p. When the Al front contacts and bus paste are applied to the solar cells, it creates the p-n junction shorts. This was confirmed by breaking wafer 3 into smaller pieces where one of the pieces had a uniform n+ layer that showed I-V curves of a diode

    Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning

    Get PDF
    In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belonging to different classes. We test our method as a feature transform for supervised classification, first by visualising transformed features from a synthetic dataset and from the ‘iris’ dataset, then by using the resulting features in a classification experiment

    Diffusion, peer pressure and tailed distributions

    Full text link
    We present a general, physically motivated non-linear and non-local advection equation in which the diffusion of interacting random walkers competes with a local drift arising from a kind of peer pressure. We show, using a mapping to an integrable dynamical system, that on varying a parameter, the steady state behaviour undergoes a transition from the standard diffusive behavior to a localized stationary state characterized by a tailed distribution. Finally, we show that recent empirical laws on economic growth can be explained as a collective phenomenon due to peer pressure interaction.Comment: RevTex: 4 pages + 3 eps-figures. Minor Revision and figure 3 replaced. To appear in Phys. Rev. Letter

    Electrical properties of a-antimony selenide

    Full text link
    This paper reports conduction mechanism in a-\sbse over a wide range of temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity measured as a function of temperature shows semiconducting behaviour with activation energy Δ\DeltaE= 0.42 eV. Thermally induced changes in the electrical and dielectric properties of a-\sbse have been examined. The a.c. conductivity in the material has been explained using modified CBH model. The band conduction and single polaron hopping is dominant above room temperature. However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]
    • …
    corecore