44 research outputs found

    Redefining the "carrier" state for foot-and-mouth disease from the dynamics of virus persistence in endemically affected cattle populations

    Get PDF
    The foot-and-mouth disease virus (FMDV) “carrier” state was defined by van Bekkum in 1959. It was based on the recovery of infectious virus 28 days or more post infection and has been a useful construct for experimental studies. Using historic data from 1,107 cattle, collected as part of a population based study of endemic FMD in 2000, we developed a mixed effects logistic regression model to predict the probability of recovering viable FMDV by probang and culture, conditional on the animal’s age and time since last reported outbreak. We constructed a second set of models to predict the probability of an animal being probang positive given its antibody response in three common non-structural protein (NSP) ELISAs and its age. We argue that, in natural ecological settings, the current definition of a ”carrier” fails to capture the dynamics of either persistence of the virus (as measured by recovery using probangs) or the uncertainty in transmission from such animals that the term implies. In these respects it is not particularly useful. We therefore propose the first predictive statistical models for identifying persistently infected cattle in an endemic setting that captures some of the dynamics of the probability of persistence. Furthermore, we provide a set of predictive tools to use alongside NSP ELISAs to help target persistently infected cattle

    Institutional Environments for Enabling Agricultural Technology Innovations: The Role of Land Rights in Ethiopia, Ghana, India and Bangladesh

    Full text link

    Study on Effect of Internet on English Learning

    No full text

    Molecular detection of tilapia lake virus (TiLV) genome in Nile tilapia (Oreochromis niloticus) from Lake Victoria

    No full text
    Proceedings of the 35 scientific conference of the Tanzania Veterinary Association held at AICC, Arusha, December 2017.ilapia lake virus (TiLV) is an emerging pathogen of Tilapiines associated with high mortalities of wild and farmed tilapia posing great threat to the fishery industry worldwide. The virus has been reported in Israel, Ecuador, Colombia, Thailand, Egypt, Taiwan, India and Malaysia. In this study, a reverse transcription polymerase chain reaction (RT-PCR) assay was developed and used to detect TiLV genome in Nile tilapia from Lake Victoria. Nile tilapia samples were collected from the Tanzanian (108 fish) and Ugandan (83 fish) parts of Lake Victoria in 2015 and 2016, respectively. Samples were screened for TiLV by using RT-PCR and the PCR products were sequenced. The findings show that out of the 191 fish examined, 28 had PCR products showing the presence of TiLV genome. The TiLV nucleic acids were detected in the spleen (10.99%, N=191), head kidney (7.69%, N=65), heart (3.45%, N=29) and liver (0.71%, N=140) samples while no PCR amplification was detected in the brain by the developed RT-PCR method. Generally, the findings show that the lymphoid organs, mainly comprising of the head kidney and spleen had the highest number of samples with positive nucleic acids for TiLV followed by heart samples. On the contrary, the liver and brain that have previously been shown to be target organs during acute infection either did not have or had the lowest level of TiLV nucleic acids detected in the present study. All the 28 sequences retrieved had an average length of 768 bp. A blast analysis on NCBI showed that all sequences obtained were homologous to TiLV segment-2 sequences obtained from previous outbreaks in Israel and Thailand. To our knowledge, this is the first detection of TiLV subclinical infections in Nile tilapia in Lake Victoria, a none-outbreak area
    corecore