626 research outputs found

    The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer

    Get PDF
    Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting

    A classical analogue of entanglement

    Get PDF
    We show that quantum entanglement has a very close classical analogue, namely secret classical correlations. The fundamental analogy stems from the behavior of quantum entanglement under local operations and classical communication and the behavior of secret correlations under local operations and public communication. A large number of derived analogies follow. In particular teleportation is analogous to the one-time-pad, the concept of ``pure state'' exists in the classical domain, entanglement concentration and dilution are essentially classical secrecy protocols, and single copy entanglement manipulations have such a close classical analog that the majorization results are reproduced in the classical setting. This analogy allows one to import questions from the quantum domain into the classical one, and vice-versa, helping to get a better understanding of both. Also, by identifying classical aspects of quantum entanglement it allows one to identify those aspects of entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update

    Modularity map of the network of human cell differentiation

    Full text link
    Cell differentiation in multicellular organisms is a complex process whose mechanism can be understood by a reductionist approach, in which the individual processes that control the generation of different cell types are identified. Alternatively, a large scale approach in search of different organizational features of the growth stages promises to reveal its modular global structure with the goal of discovering previously unknown relations between cell types. Here we sort and analyze a large set of scattered data to construct the network of human cell differentiation (NHCD) based on cell types (nodes) and differentiation steps (links) from the fertilized egg to a crying baby. We discover a dynamical law of critical branching, which reveals a fractal regularity in the modular organization of the network, and allows us to observe the network at different scales. The emerging picture clearly identifies clusters of cell types following a hierarchical organization, ranging from sub-modules to super-modules of specialized tissues and organs on varying scales. This discovery will allow one to treat the development of a particular cell function in the context of the complex network of human development as a whole. Our results point to an integrated large-scale view of the network of cell types systematically revealing ties between previously unrelated domains in organ functions.Comment: 32 pages, 7 figure

    Piccole capitali creative

    Get PDF
    Nel secolo urbano che abbiamo di fronte, la citt\ue0 sar\ue0 lo scenario della competizione delle energie, delle risorse umane, delle intelligenze collettive e della creativit\ue0 per la costruzione di un\u2019evoluzione pi\uf9 compatibile con le identit\ue0 e le vocazioni e pi\uf9 sostenibile rispetto alle risorse ed alle sensibilit\ue0 del territorio. I segnali delle sue forme, delle sue relazioni e delle sue identit\ue0 sono gi\ue0 evidenti in alcune citt\ue0 del presente ed ad essi sono dedicate numerose ricerche urbanistiche, sociologiche ed economiche. Ma i segnali sono evidenti e trasmettono ispirazioni e stimoli anche a chi osserva la citt\ue0 per mestiere di progettista, di pianificatore, di stratega dello sviluppo. Il XXI secolo sar\ue0 l\u2019era indiscussa delle citt\ue0 e su di esse si misurer\ue0 lo sviluppo delle nazioni. Per la prima volta, pi\uf9 della met\ue0 della popolazione mondiale vivr\ue0 nelle citt\ue0, in Europa oggi la cifra \ue8 gi\ue0 di oltre il 75%, e nei paesi in via di sviluppo raggiunger\ue0 velocemente il 50%. Il mondo si svilupper\ue0 sia attorno a grandi megalopoli da decine di milioni di abitanti, ma anche attorno a citt\ue0 metropolitane, a conurbazioni diffuse e ad armature di micropoli: all\u2019armatura urbana delle citt\ue0 globali si annoder\ue0, soprattutto in Europa, l\u2019armatura delle citt\ue0 di secondo livello, produttrici di visioni alternative rispetto all\u2019esplosione delle megalopoli. L\u2019armatura urbana europea di secondo livello \u2013 le piccole capitali, sempre pi\uf9 citt\ue0-porta \u2013 si delinea come annodata attorno a \u201ccitt\ue0 della cultura\u201d, nel senso di citt\ue0 non solo detentrici di risorse culturali profonde lasciate dal palinsesto della storia, ma anche produttrici di nuova cultura: le culture-based competition cities saranno, infatti, quelle citt\ue0 in grado di competere nel panorama internazionale attraverso la valorizzazione e la promozione della propria identit\ue0 culturale, sia consolidata che in evoluzione

    Optimal Non-Universally Covariant Cloning

    Full text link
    We consider non-universal cloning maps, namely cloning transformations which are covariant under a proper subgroup G of the universal unitary group U(d), where d is the dimension of the Hilbert space H of the system to be cloned. We give a general method for optimizing cloning for any cost-function. Examples of applications are given for the phase-covariant cloning (cloning of equatorial qubits) and for the Weyl-Heisenberg group (cloning of "continuous variables").Comment: 6 page

    Classical electromagnetic field theory in the presence of magnetic sources

    Get PDF
    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.Comment: 10 pages, no figure

    Wigner Functions and Separability for Finite Systems

    Full text link
    A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension p^n where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the continuous case. That is, we use a phase space that is a direct sum of n two-dimensional vector spaces each containing p^2 points. This is in contrast to the more usual choice of a two-dimensional phase space containing p^(2n) points. A useful aspect of this approach is that we can relate complete separability of density matrices and their Wigner functions in a natural way. We discuss this in detail for bipartite systems and present the generalization to arbitrary numbers of subsystems when p is odd. Special attention is required for two qubits (p=2) and our technique fails to establish the separability property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of the A matrices has been adde

    ROM-based quantum computation: Experimental explorations using Nuclear Magnetic Resonance, and future prospects

    Get PDF
    ROM-based quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less ``magical'', and being more suited to implementing space-efficient computation (i.e. computation using the minimum number of writable qubits). Here we consider a number of small (one and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using NMR ensemble QC. The average fidelities for the implementation were in the ranges 0.9 - 0.97 for the one-qubit algorithms, and 0.84 - 0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature ``real-world'' problem relating to the lengths of paths in a network.Comment: 11 pages, 5 figure

    Can exercise delay transition to active therapy in men with low-grade prostate cancer? A multicentre randomised controlled trial

    Get PDF
    Introduction Active surveillance is a strategy for managing low-risk, localised prostate cancer, where men are observed with serial prostate-specific antigen assessments to identify signs of disease progression. Currently, there are no strategies to support active surveillance compliance nor are there interventions that can prevent or slow disease progression, ultimately delaying transition to active treatment before it is clinically required. Recently, we proposed that exercise may have a therapeutic potential in delaying the need for active treatment in men on active surveillance. Methods and analysis A single-blinded, two arm, multicentre randomised controlled trial will be undertaken with 168 patients randomly allocated in a ratio of 1:1 to exercise or usual care. Exercise will consist of supervised resistance and aerobic exercise performed three times per week for the first 6 months in an exercise clinical setting, and during months 7–12, a progressive stepped down approach will be used with men transitioning to once a week supervised training. Thereafter, for months 13 to 36, the men will self-manage their exercise programme. The primary endpoint will be the time until the patients begin active therapy. Secondary endpoints include disease progression (prostate specific antigen), body composition and muscle density, quality of life, distress and anxiety and an economic analysis will be performed. Measurements will be undertaken at 6 and 12 months (postintervention) and at 24 and 36 months follow-up. The primary outcome (time to initiation of curative therapy) will be analysed using Cox proportional hazards regression. Outcomes measured repeatedly will be analysed using mixed effects models to examine between-group differences. Data will be analysed using an intention-to-treat approach
    • …
    corecore