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Read-only-memory-based~ROM-based! quantum computation~QC! is an alternative to oracle-based QC. It
has the advantages of being less ‘‘magical,’’ and being more suited to implementing space-efficient computa-
tion ~i.e., computation using the minimum number of writable qubits!. Here we consider a number of small
~one- and two-qubit! quantum algorithms illustrating different aspects of ROM-based QC. They are:~a! a
one-qubit algorithm to solve the Deutsch problem;~b! a one-qubit binary multiplication algorithm;~c! a
two-qubit controlled binary multiplication algorithm; and~d! a two-qubit ROM-based version of the Deutsch-
Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance
ensemble QC. The average fidelities for the implementation were in the ranges 0.9–0.97 for the one-qubit
algorithms, and 0.84–0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for
ROM-based quantum computation. We propose a four-qubit algorithm, using Grover’s iterate, for solving a
miniature ‘‘real-world’’ problem relating to the lengths of paths in a network.
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I. INTRODUCTION

The current excitement in, and perhaps even the existe
of, the field of quantum computation@1# is due to the dem-
onstration that quantum computers can solve problem
fewer steps than classical computers@2–6#. An improvement
is rigorously established for the Deutsch-Josza algorithm@3#
and for Grover’s search algorithm@6#, while Shor’s factor-
ization algorithm@4# uses exponentially fewer steps than a
knownclassical algorithm.

It is interesting that, of the above quantum algorithm
those that are provably faster~a! are not exponentially faster
and ~b! make use of an oracle. An oracle is a ‘‘black bo
that defines a function

f :Z2n°Z2m. ~1.1!

Here ZN is the natural numbers moduloN, that is,
$0,1, . . . ,N21%. The oracleOf acts on an-qubit stringuk&,
and anm-qubit stringu l & as follows:

*Electronic address: H.Wiseman@gu.edu.au
1050-2947/2002/66~1!/012306~11!/$20.00 66 0123
ce

in

,

Of uk&u l &5uk&u l % f ~k!&, ~1.2!

where% represents bitwise addition modulo 2. Note that w
are defining an oracle so that it can be applied to classica
strings as well as to qubit strings.

Although the concept of an oracle is very useful in t
context of complexity theory, they are, as their name s
gests, somewhat ‘‘magical’’ in their operation. Thus th
may hide a great deal of computational complexity in o
step, and for this reason can be considered ‘‘unrealistic’’@7#.
In a quantum context, it has been suggested that coun
oracle calls may be a poor way to study the power of al
rithms @8#. Finally, it seems to us that oracle-based comp
ing is best for studying time efficiency, rather than spa
efficiency.

All of these factors suggest that it is worth exploring
alternative basis for computation. In this paper we expl
quantum computation based on ROM~read-only memory!.
In an earlier paper@9# two of us and co-workers showed th
a ROM-based quantum computer is more space efficient
a ROM-based classical computer. Here space efficienc
defined in terms of the number ofwritable qubits required. In
particular, one writable qubit is sufficient to compute a
©2002 The American Physical Society06-1
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binary function of an arbitrary number of ROM bits, where
two writable bits are needed to achieve the same. Also, f
particular one-bit function~multiplication of all the ROM
bits! evidence was found to support the conjecture that
qubit can solve the problem in polynomial time, where
threebits are required for the same.

These results indicate that ROM-based computation
ideal for demonstrating space efficiency~and possibly time
efficiency! on small scale quantum computers. Of course
the moment small scale quantum computers are all we h
experimentally. For example, in ion traps the number of
bits that can be coherently controlled is at most four@10#,
and in nuclear magnetic resonance~NMR! experiments on
ensembles of molecules, the number is at most seven@11#. In
this paper we explore the space-efficient quantum algorith
in Ref. @9#, as well as other ROM-based quantum algorithm
in an NMR context.

The structure of this paper is as follows. In Sec. II w
review ROM-based computation as defined in Ref.@9#. In
Sec. III we present the simplest space-efficient one-qubi
gorithm ~which solves Deutsch’s problem!. Section IV cov-
ers the one-qubit ROM-multiplication algorithm of Ref.@9#.
In Sec. V we present a two-qubit version of this, the co
trolled ROM-multiplication, which is also provably mor
space efficient than any classical algorithm~which would
require three bits!. In Sec. VI we explore the Deutsch-Jos
algorithm using ROM rather than an oracle. In Secs. III–
we present experimental results following the theory. We d
cuss these results, and how they compare with a probabil
classical computer, in Sec. VII. We conclude in Sec. V
with a discussion of future prospects for ROM-based qu
tum computation, and in particular we propose a four-qu
demonstration of quantum computing solving a ‘‘realisti
problem~i.e., a problem that can be related to the real wo
and that would require more than a second of human thou
to solve!.

II. ROM-BASED COMPUTATION

We consider quantum computation using qubits, the nu
ber of which remains fixed throughout the computation. T
computer evolves by the operation ofgates, which imple-
ment a unitary operation on one or more qubits simu
neously. It has been shown@12# that a single two-qubit gate
such as the controlled-NOT gate, supplemented by all one
qubit gates, is sufficient to perform all possible quantu
computations in this model. Unitary gates are of course
versible. This means that in principle the computation can
carried out without dissipation of information and hen
without energy cost@1,13#.

To make a fair comparison with unitary quantum comp
tation, we must consider reversible classical computation
is well known, universal reversible classical computation
not possible with just one-bit and two-bit gates. Rather
three-bit gate such as the Toffoli gate or Fredkin gate
required@14#. The measurement of the state of the qubits~in
the computational basis! takes place only at the end of th
computation. Similarly, initialization~setting a bit to a fidu-
cial state such asu0&) is allowed only at the beginning of th
01230
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computation. These stipulations are necessary to keep
computation nondissipative.

Before proceeding, let us establish some notation. We
write then-bit ~or qubit! representation of a numberxPZ2n

as ux&. This is equivalent to the notationux&
5uxn21&uxn22&•••ux1&ux0&, where x5(pxp2p. In a ‘‘cir-
cuit’’ diagram, the most significant bit,uxn21&, will appear at
the bottom of the diagram, and the least significant bit,ux0&
at the top.

We used this notation already in Eq.~1.2! to specify the
action of an oracle that implements the functionf defined in
Eq. ~1.1!. In ROM-based computation, the functionf that is
the subject of the computation is implemented not by
oracle, but by its values$ f (k):kPZN% being stored in read-
only memory. Specifically, forf as defined in Eq.~1.1!, N
3m ROM bits are required to store the function. For t
simple casem51 ~a binary function!, we requireN bits that
could be allocated asf 0 , f 1 , . . . ,f N21, where f k[ f (k).
These ROM bits are not counted in the size of the compu
That is to say, the size of the computer is taken to be
number of additional~non-ROM! ~qu!bits.

To capture the essence of read-only memory, we imp
the following constraints.

~1! The ROM bits$ f k :k% can be prepared only in a clas
sical state.

~2! For any gate involving the writable qubits, anysingle
ROM bit, f k for somek, may act as anadditionalcontrol bit.

~3! No other gates involve the ROM bits.
These three conditions together imply that the ROM b

will always remain in the same state. In finite state autom
models, space-bounded computation can be discussed u
Turing machines with two tapes, one of which is read on
@7#. This is clearly very similar to the present idea of ind
vidually accessed ROM bits. The necessity for placing a c
straint on the number of ROM bits that can act as simu
neous control bits was discussed in Ref.@9#.

The restriction to single-bit ROM access leads to a s
plification in the representation of ROM in circuit diagram
of reversible computation. Rather than explicitly usin
‘‘wires’’ to represent the ROM bits we will simply leave
space at the top of the diagram, and write which ROM bit~if
any! is acting as the extra control bit for that gate. Th
suggests an alternative way to conceptualize the replacem
of the oracle by ROM. An oracle is like an all-knowing pe
son who refuses to divulge information except when aske
question in a certain way. ROM is like a committee of peop
who each have one bit of information but who refuse
communicate with one another except by acting individua
upon a device. In this way problems in ROM-based quant
computation can be seen to have some similarities to p
lems in quantum communication such as in Refs.@15–18#.

As a final remark on our ROM-based model of compu
tion, we restrict ourselves, as in Ref.@9#, to deterministic
computation. That is, we consider only algorithms that~if
implemented perfectly! have zero probability of error. It
might be thought that a finite probability of error should
acceptable if one is not concerned with time as a resou
because repeating the original algorithm will eventually le
to the correct answer with arbitrarily small error. This is n
6-2
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READ-ONLY-MEMORY-BASED QUANTUM . . . PHYSICAL REVIEW A66, 012306 ~2002!
a valid argument because repetition is useful only if the
sults of trials are remembered, and this uses resour
namely, bits, which must be included in the space cost of
computation. An asymptotically small error could in gene
be achieved in this manner only by using a log asympt
cally large number of bits.

III. ONE QUBIT SOLUTION TO THE DEUTSCH
PROBLEM

A. Theory

The smallest quantum computer is obviously one qubi
turns out that this, plus additional ROM bits rather than
oracle, is sufficient to solve the Deutsch problem@2# for any
n. The Deutsch problem can be phrased in the following w
Given a function of the form~1.1! with N52n>4 and m
51, find a true statement from the following list.

~A! f is not balanced.
~B! f is not constant.
A constant functionf is one for which(kf (k)50 or N;

that is, for which f (k)50;k or f (k)51;k. A balanced
function f is one for which(kf (k)5N/2. Clearly one of~A!
and ~B! must be true, and they both may be true in whi
case either can be chosen.

Deutsch and Josza~DJ! found a quantum algorithm tha
solved this problem usingn11 qubits and two oracle call
@3#. By replacing the oracle with 2n ROM bits, we are able to
solve the problem with a single qubit and with one cont
from each ROM bit. If we were concerned with time ef
ciency, the exponential number of ‘‘ROM calls’’ may seem
problem. However, here we are concerned only with sp
efficiency.

The one-qubit algorithm to solve this problem is ve
simple,

~3.1!

The computer is prepared in the fiducial stateu0&. Each
ROM bit, f kP$ f 0 , f 1 , . . . ,f N21%, in turn controls~indicated
by the vertical line! a rotation on the qubit with unitary op
erator@2p/N#y . That is, the gate is implemented if and on
if f k51. Here we are using the notation

@u#a5exp@2 i ~u/2!sa#, ~3.2!

where sa are the usual 232 Pauli matrices, witha
P$x,y,z%. For the standard representation of these matri
the basis states are

u0&5S 1

0D , u1&5S 0

1D . ~3.3!

In Eq. ~3.1!, the measurement is represented symbolically
an eye, (., and yields the resultx, a single bit. That this is a
classical piece of information is represented by the dou
rather than single, wire.
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If the function is constant, then either it never leaves
stateu0&, or it is rotated byN3(2p/N)52p around they
axis, returning it to the stateu0&. If the function is balanced
it is rotated by (N/2)3(2p/N)5p around they axis, putting
it into the stateu1&. If it is neither balanced nor constant
will end up in a superposition ofu0& and u1&, so a measure-
ment will yield either result. This computation clearly solv
the Deutsch problem. If the measured statex of the computer
is 0, the answer returned is~B!. If the measured state is 1
the answer returned is~A!.

To show the superiority of a space-bounded quant
computer over a space-bounded classical computer we
ply have to prove that a one-bit classical computer can
solve the DJ problem. Consider the simplest case, when
52, so thatf maps$0,1,2,3% to $0,1%. Since the only possible
one-bit gate is aNOT gate @N#, which obeys@N#251, the
only one bit operation for this problem is

@N# f 0p01 f 1p11 f 2p21 f 3p3, ~3.4!

where eachpkP$0,1%. Acting on the initial state 0, this com
putes the functional(pkf k modulo 2. It is trivial to prove
that this functional does not distinguish between balan
and constant functions for any choice ofp0 ,p1 ,p2 ,p3.

B. Method

The sample used for all of the following experiment
demonstrations was a 0.1M solution of heavy chloroform,
13C1HCl3, dissolved in D6 acetone, CD3COCD3 ~for locking
purposes!. Chlorine isotopes35Cl and 37Cl have large quad-
rupole moments (I 53/2), resulting in extremely short relax
ation times when covalently bonded, on the order of 10ms.
This has the effect of masking scalar coupling between ch
rine and other nuclei@20#. Thus, the chloroform molecule i
effectively a two-spin system, proton and carbon 13, withI
51/2 for both spins.

All spectra were obtained using a Bruker DRX-500 spe
trometer, for which the magnitude ofH0 was approximately
11.6 T. The resonance frequencies of the proton peaks w
nH5500.137 849 MHz andnC5125.777 547 49 MHz. The
scalar coupling was measured to beJ5(214.860.5) Hz.
Clearly,J!unH2nCu, so that the two spins can be resonan
excited independently. There is more than 1 kHz separa
to the solvent lines, which thus played no part in the expe
ment. All experiments were performed at a temperature
(29860.1) K. The measured values for the longitudinalT1

and transverseT2* ~including field inhomogeneity effects! re-
laxation times wereT1(H)5(9.760.2) s, T1(C)5(11.0
60.2) s, T2* (H)5(6.460.3) s, and T2* (C)5(0.2
60.01) s. The maximum pulse program time was appro
mately 20 ms, significantly less than all of the above valu

For the one-qubit algorithms, the H nucleus was used a
had a far narrower linewidth. The initial state is the therm
equilibrium state, which has a small excess spin in the l
gitudinal direction~spin up!. This pseudo-pure-state@21# has
observable signal proportional to that of stateu0&, as desired.
A one-qubit gate can be implemented by an appropria
phased transverse magnetic field pulse~or short sequence o
6-3
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pulses!, rotating at the resonant~radio! frequency of the
nucleus. If a particular gate is ROM controlled then it
implemented only when the value of the controlling ROM
is one. Following the complete pulse sequence, ap/2 trans-
verse pulse is used to shift longitudinal spin into the tra
verse plane, where its precession will induce a signal in th
coils ~the readout!. A positive spectrum indicates an exce
of spin-up populations before the readout pulse was app
The presence of the13C nucleus, with almost equal popula
tion spin up and spin down, causes a frequency splitting
J/2. Thus the observed spectra for the two logical states
of the form

~3.5!

The fidelity of the transformation is calculated by dividin
the area under the spectrum by that which would have ar
from a perfect transformation of the thermal signal. Since
final readout is equivalent to the average of the results
projective measurements in thesz basis of each member o
the ensemble, the area ratioR can be considered to be due
a mixture of the correct result~with probability F) and the
incorrect result~with probability 12F), namely,R5F2(1
2F). Thus the fidelity is calculated asF5(R11)/2.

C. Results

The Deutsch problem has a deterministic output if o
adds the promise that the functionf is either balanced o
constant. In this case output~A! indicates thatf is constant
and ~B! that it is balanced. WithN54, this means that in
effect there are only three different pulse sequences ari
from the algorithm in Eq.~3.1!: that in which all values off
are zero, that in which two are one, and that in which all fo
are one.

The results of these three different pulse sequences
shown in Fig. 1. We see that the results agree well with
theory. The first case consists of doing nothing, so its fide
is one, by definition. The fidelity of the other cases is cal
lated as described above. The average fidelity~taking into
account that there are six possible ways in which the fu
tion can be balanced! is F̄50.9.

FIG. 1. Spectra for H nucleus showing the implementation
our one-qubit solution to the Deutsch problem. The values of
four ROM bits are shown above each spectrum. The fidelities~F!
are also shown.
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IV. ONE-QUBIT MULTIPLICATION

A. Theory

The above results demonstrate that a one-qubit quan
computer can solve problems that no one-bit classical c
puter can. By adding one more classical bit, the problem
be solved~this is always true, as shown in Ref.@9#!. More-
over, there is a two-bit algorithm that is just as time efficie
as our quantum algorithm above.~It uses the two bits to tally
the f k’s modulo 3, and is based on the fact that if 2nmod 3
52 then 2n21mod 351 and vice versa.!

In this section we consider another one-qubit algorith
which is also impossible on a one-bit computer, and which
conjectured@9# to be more time efficient than any two-b
algorithm. It also solves a more natural problem than the
problem, namely, to find the product ofN ROM bits
u1 , . . . ,uN . The quantum algorithm derived in Ref.@9# re-
quires exactlyN2 ROM calls for N a power of two, and
O(N2) otherwise. The required number of ROM callsr for a
two-bit classical computer was found by numerical search
be r 51,3,5,9 forN51,2,3,4. It is conjectured thatr (N) is
given by the recursion relationr (N)5r (N21)12bN/2c, and
there is an obvious classical algorithm requiring exactly t
many ROM calls. This formula is clearly asymptotically e
ponential inn, but is actually smaller than theN2 ROM calls
in the quantum algorithm forN52, 4, and 8.

In the experiment we only implemented the quantum
gorithm for N52 andN54. The one-qubit algorithm tha
determinesu13u2 can be constructed as follows.

~4.1!

In an abuse of our notation, we will indicate the above alg
rithm as

~4.2!

Similarly, a gate effecting the transformation@6p/4#x ,
conditional onu13u2, is

~4.3!

These operations can be combined to construct an algor
that determines the answera5u13u23u33u4, viz.

~4.4!

B. Results

The results shown in Figs. 2 and 3 were obtained by
method outlined above. Again we see good agreement w

f
e

6-4
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theory. The average fidelity wasF̄50.97 in the case of mul-
tiplying two ROM bits, andF̄50.92 for multiplying four
ROM bits.

V. TWO-QUBIT CONTROLLED MULTIPLICATION

A. Theory

It is simple to generalize the above single-qubit algorith
~with a space advantage of one bit compared to class
computation! to a two-qubit algorithm also with a space a
vantage of one bit. This is done by requiring the calculat
of u13u23•••un3x1, wherex1 is the value of the secon
writable bit. The modified algorithm is identical to the one
the preceding section, except that all of the gates~which act
on the first bitux0&) are controlled by the second bitx1 as
well as by all of the ROM bits. That this cannot be done
a two-bit classical computer follows from the proof by To

FIG. 2. Spectra for the H nucleus for the one-qubit algorithm
multiplying two ROM bits ~shown asu1u2). A small systematic
error is evident in the dispersive features seen in the last case. O
details are as in Fig. 1.

FIG. 3. Spectra for the H nucleus for the one-qubit algorithm
multiplying four ROM bits~shown asu1u2u3u4). Small systematic
errors are evident in the dispersive features seen in most c
Other details are as in Fig. 1.
01230
al

n

foli @19# that multicontrolled-NOTS cannot be built from
single controlledNOTS without the use of an auxiliary writ-
able bit.

For the casen52, the circuit is

~5.1!

Here the solid circles on the wire for the second qubit in
cate that it acts as a control qubit for the relevant gate.

B. Method

In addition to the selective rf pulses tuned to the H and
nuclei, the two-qubit algorithm requires an interaction b
tween the nuclei. This occurs simply by leaving time b
tween the~negligibly short! pulses for the spin-spin couplin
Hamiltonian

H5hJsz
Hsz

C/4 ~5.2!

to act. These periods of free evolution are usually of durat
1/4J or 1/2J, and are simply denoted by this time. For e
ample,

F 1

2JG5exp@2 iH ~1/2J!/\#5
1

A2
@12 isz

Hsz
C#. ~5.3!

The two-qubit algorithm also requires a pure initial sta
A pseudo-pure-stateu00& of both spins~H and C! up can be
prepared from the thermal equilibrium state by a sequenc
rf pulses, free evolution, and gradient pulses. The last
these effectively removes the transverse spin of the sam
That is, it diagonalizes the state matrix into the logical ba
We use the pulse sequence of Coryet al. @22#, but change the
@p/6#y pulses for both spins into a@2p/6#y pulse. This is to
ensure that the signal is that for the pseudo-pure-stateu00&,
rather than the negative signal, which corresponds to a s
matrix }I 2u00&^00u, whereI is the 434 identity matrix. In
theory, this pseudo-pure-state preparation procedure re
in a signal reduction by 3/8 compared to the original therm
equilibrium state.

The readout is done identically to the one-qubit case. T
correspondence between the logical states and the obse
spectra is more complicated. The single resonance peak
each spin is potentially split into a doublet, atv6pJ. With
the NMR convention of frequency increasing from right
left, the spectral shapes for the four logical states are
follows.

r

her

r

es.
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~5.4!

As in the one-qubit cases, for calculating the fidelity w
are interested only in the occupation of the logical sta
since our computation is meant to be deterministic. We in
grate under the spectra at the four frequencies, and divid
0.375 of the area of the original thermal state. The 0.37
due to the theoretical signal loss in the pseudo-pure-s
preparation described above. This procedure gives a num
linearly related to the occupation probabilitiesp00, p10, p01,
and p11. For example, the area ratioRl

H under the left hy-
drogen peak should satisfy

Rl
H5p102p11. ~5.5!

In addition, the probabilities should sum to unity. Thus w
have five equations in four unknowns, which we solve b
least-squares method to yield the probabilities. If the des
outcome isu11&, for example, then the fidelity equalsp11.

The above algorithm requires four controlled gates. Th
can be constructed from resonant pulses on the two nu
plus periods of free evolution of duration 1/2J or 1/4J. Spe-
cifically,

~5.6!

~5.7!

and

~5.8!

wheren is an axis defined byn5(x1y)/A2.

C. Results

The pseudo-pure-stateu00& was produced with fidelity of
0.93. This appears as the first line of Fig. 4, which is
running of the controlled-multiplication algorithm when th
ROM bits are 00~i.e., nothing is done!. The results for the
other possible ROM values appear in the next three spe
All four of these spectra are the same, as they should
since the control~carbon! qubit being set to zero means th
x05x13u13u250. The last four spectra are repeats of t
first four, but with the control~carbon! qubit initially rotated
01230
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from u0& to u1&. This state,u10&, was prepared with fidelity
0.89, as shown for the case where the ROM bits are 00
expected, all spectra but the last also havex050, and the last
showsx051.

The raw fidelities, calculated as discussed above,
shown in the figure. Let us scale out the fidelity of the init
state preparation~that is, divide the raw fidelities by 0.93 fo
the first four spectra and 0.89 for the last four!, and take the
average. Then we get a mean fidelity for the implementat

of the algorithm ofF̄50.94.

VI. TWO-QUBIT ROM-BASED DEUTSCH-JOSZA
ALGORITHM

A. Theory

We saw in Sec. III that the Deutsch@2# problem can be
solved on a ROM-based computer with a single qubit. T
algorithm was quite unlike that proposed by Deutsch@2# and
Deutsch and Josza@3#. In this section, we investigate th
implementation of the Deutsch-Josza algorithm on a RO
based computer. This requires at least two bits to solve
Deutsch problem. Our motivations here thus do not inclu
space efficiency. Instead, they are as follows.

First, as noted in the Introduction, ROM-based compu
tion seems more realistic, so it is interesting to see how it

FIG. 4. Spectra for the H and C nuclei for the two-qubit alg
rithm for multiplying two ROM bits, controlled by the first~C! bit.
The initial pseudopure states of the two bits are shown with
spectra, along with the ROM bits~shown asu1u2). Small system-
atic errors are evident in most cases. Other details are as in Fi
6-6
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be applied to an apparently quintessentially oracular a
rithm.

Second, there is a question of interpretation of past
periments. Again as noted in the Introduction, an ora
should be definable@see Eq.~1.2!# by its action on a classica
computer. This is necessary in order not to give an un
space advantage~of m qubits! to a quantum computer. Thi
requirement is met in the original theoretical proposals
Deutsch and Josza@3# and Grover@6#. However, it is not met
in proposals such as that in the ‘‘refined’’ Deutsch-Josza
gorithm of Ref.@23#, implemented in Ref.@24#. That is be-
cause in this algorithm the oracle directly produces ph
shifts, which have no classical analog. The requiremen
Eq. ~1.2! would also rule out the oracles implemented
other NMR experiments@25–27# ~but not to those in Refs
@28–30#!. Our analysis here will show that these experime
can be very easily reinterpreted in terms of ROM calls rat
than oracle calls.

Third, there is a question of how quantum the Deuts
Josza algorithm is. The use of a nonclassical oracle all
the Deutsch-Josza algorithm to be implemented using
fewer qubit (n rather thann11). The same number~n! of
qubits are required for the ROM-based implementation.
the minimal casen52, it was shown in Ref.@23# that with
the nonclassical oracle, the Deutsch-Josza algorithm doe
utilize entanglement. On this basis, the authors claim tha
therefore ‘‘solves the Deutsch problem in a classical wa
Leaving aside questions as to the meaning of ‘‘classical’
this context, we show that in a ROM-based implementati
entanglement necessarily occurs. This suggests that the
called classicality noted in Ref.@23# is due to the unrealistic
nature of the oracle they use.

In the ROM-based implementation of the Deutsch-Jo
algorithm, the ROM bits are the same as in Sec. III, nam
the binary valuesf 0 , . . . ,f N21 of the function f, which is
either balanced or constant. For the minimal caseN54 (n
52), the algorithm is

~6.1!

Here the four distinct two-qubit gates,fab change the sign
of the logical stateuab&, leaving the other three unaltere
Mathematically, the operation of these gates can be
pressed as

fabugd&5~122dagdbd!ugd&. ~6.2!

The resultx1x0500 indicates a constant function; any oth
result indicates a balanced function.

The four ROM-controlled gates together have exactly
same effect as the nonclassical oracle introduced in R
@23#. This is an example of how any nonclassical oracle
a ROM analog. The application of an odd number of the
gates creates an entangled state, so the intermediate sta
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the quantum computer are entangled. It is only because
number of times the gates are applied is even~because the
function is promised to be balanced or constant! that the state
at the end of the four ROM-controlled gates is not entangl
Entanglement is required in all cases of this algorithm exc
when the function is identically zero.

B. Method

We use the following realization of the two-qubit pha
gates:

~6.3!

C. Results

The results are shown in Fig. 5. Comparing with the ta
~5.4!, we see that the result 00 is obtained only for the c
of function values 0000 and 1111, as expected. Results
the values 1100, 1010, and 0110 were not obtained. If
algorithm implementation were perfect then the state a
the four controlled phase gates in these cases would be
same as for 0011, 0101, and 1001 shown in Fig. 5. Ther
also no reason from the pulse sequence to expect the fi
ties to be very different for those cases implemented. We
thus take the cases shown as being representative, and
them to calculate an average fidelity over the eight poss
functionsf. Scaling away the fidelity of 0.93 for the pseud
pure-state preparation~as in Sec. V!, we obtainF̄50.84.

FIG. 5. Spectra for the H and C nuclei for the two-qubit ROM
based Deutsch-Josza algorithm. The ROM bits are shown
f 00f 01f 10f 11. Note that the order of the carbon and hydrogen spe
are reversed as compared to Fig. 4 and Eq.~5.4!. Small systematic
errors are evident in all cases. Other details are as in Fig. 1.
6-7
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VII. DISCUSSION OF EXPERIMENTAL RESULTS

The experimental results shown clearly verify the RO
based quantum algorithms discussed in this paper. The a
age fidelities of the algorithms were not unusually good
NMR experiments. They were 0.9, 0.97, and 0.92 for
one-qubit algorithms, and 0.94 and 0.84 for the two-qu
algorithms. These fidelities are definitely correlated with
length of the pulse sequence required. However, it is in
esting that the lowest fidelity~0.84! was obtained for the
ROM-based Deutsch-Josza algorithm, which was not m
longer than the other two-qubit algorithm, but which differ
from it in that it used entangling operations.

The largest source of error was probably spatial and t
poral variation in the intensity and phase of the rf pulses. T
spatial variation of field strength is a direct consequence
limitations imposed by the structure of the coils, being sm
Helmholtz coils. Cummins and Jones@31# provide a good
discussion of the errors incurred in NMR computing a
explain how the systematic errors due toH1 field inhomoge-
neities can be greatly reduced. We did not attempt to ap
these techniques.

Any implementation of a quantum computer will involv
some level of errors, and therefore generate fidelities
than one. This brings into question the space efficiency
quantum computation. That is, an algorithm with nonu
fidelity implemented on a quantum computer would lead t
wrong answer some of the time, and so a probabilistic c
sical computer may be able to do as well. Let us compare
fidelities we obtained in experiment with what a probabilis
classical computer could do.

For the one-qubit Deutsch problem withN54, there are
two constant functions and six balanced functions. There
a fidelity of 3/4 can be obtained with zero bits, simply b
guessing the answer ‘‘balanced.’’ Suppose one has one w
able bit at one’s disposal. Using this writable bit, one c
calculate the modulo sum of any or all of the ROM bi
Calculating the modulo sum of all ROM bits is pointles
because this is equal to zero for all constant and balan
functions. Likewise, the modulo sum of any one or any th
of the ROM bits gives no information. The modulo sum
two ROM bits does give some information, as the result 1
obtained for four out the six balanced cases, and never
the constant cases. Clearly if the result 1 is obtained
should choose ‘‘balanced,’’ but even if the result 0 is o
tained, one might as well choose ‘‘balanced’’ as that will s
be right half the time. Thus the uninformed guess aver
fidelity of 3/4 is optimal. The obtained average fidelity of th
quantum algorithm, 0.9, is far above this.

For the multiplication of two ROM bits, again the onl
quantity that can be computed with one bit is the value
one ROM bit, or the binary sum of both. By arguments sim
lar to those employed above, it can be verified that this
useless in helping to guess the answer. Thus the most li
answer, 0, might as well be chosen, giving an average fi
ity of 3/4. Again, this is far below the obtained average
delity of the quantum algorithm of 0.97.

For the multiplication of four ROM bits, the uninforme
best guess is again 0, and this is right 15/16 of the time.
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experiment was performed with a fidelity of 0.92, so in th
instance the fidelity obtained by a probabilistic classi
computer is greater than that obtained with the quant
computer.

In the case of two-qubit controlled multiplication, th
quantum algorithm was implemented with an average fide
of 0.94. Using a probabilistic classical computer, with tw
writable bits, it seems that the best we can do is gues
which is correct 7/8 of the time. Thus, the classical fidelity
below that of the quantum algorithm.

It should be emphasized that these conclusions result f
a particular assumption about the prior probabilities of
values of the ROM bits. With a different prior distribution
the average fidelity would be different in both the classi
and quantum cases~best fidelity and obtained fidelity, re
spectively!.

Finally, the ROM-based Deutsch-Josza algorithm can
demonstrate any space-efficiency even for unit fidelity.
was implemented for a different reason, as explained in S
VI.

VIII. FUTURE PROSPECTS: A ‘‘REALISTIC’’ PROBLEM

In this paper, we have presented a number of ROM-ba
quantum algorithms for one- and two-qubit processors. O
of these~one-qubit multiplication! was derived in Ref.@9#.
The others are a one-qubit algorithm solving the Deut
problem, a two-qubit controlled-multiplication algorithm
and a two-qubit ROM-based Deutsch-Josza algorithm s
ing the Deutsch problem. For all algorithms we have a
presented experimental verification, using NMR ensem
quantum computing.

All except one of the above algorithms demonstra
space efficiency, in that a classical computer would requ
an extra processor bit to solve the problems. The exceptio
the ROM-based Deutsch-Josza algorithm. We believe
future prospects for ROM-based quantum computation
more in the direction of this last example. There are t
reasons. First, it follows from the results of Ref.@9# that the
maximum space efficiency offered by ROM-based quant
computation is one bit, which could not be significant
computations of a useful scale. Second, in showing how
oracular algorithm can be implemented on a ROM-ba
computer, the example of Sec. VI illustrates how tim
efficient quantum computing could be implemented reali
cally.

In the remainder of this section we will explore a futu
prospect for ROM-based quantum computation along th
lines. We take as our basis not the Deutsch-Josza algori
but another famous oracle-based algorithm, proposed
Grover @6#. We will show how the oracle in this algorithm
can also be implemented using ROM calls. We find a spec
implementation with two properties of interest. First, it
experimentally feasible in the short term, requiring only fo
qubits. Second, it solves a problem that can be related
read-world situation~albeit a miniaturized one!, and that
would require more than a second of cerebral process
time to solve.

The problem we consider relates to the lengths of pa
6-8
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READ-ONLY-MEMORY-BASED QUANTUM . . . PHYSICAL REVIEW A66, 012306 ~2002!
between two vertices in a network~a set of vertices con
nected by edges of differing lengths!. Some problems of this
nature, such as finding the longest such path, are known t
NP complete@7#. This is a class of problems that are almo
certainly exponentially hard to solve, and are thus of gr
practical interest.

Consider the network below,

~8.1!

There are four vertices, labeledB, L, U, andE ~for Begin,
Lower, Upper, and End!, linked by edges. These could re
resent cities and roads, respectively. We are interested in
length of paths fromB to E, as indicated by the direction o
the arrows in Eq.~8.1!. Assuming no back tracking, there a
four possible paths:BLE, BUE, BLUE, and BULE, to
which we assign the numbers from 0 to 3. Each pathp has a
length L(p) associated with it, equal to the sum of th
lengthsl (e) of each edgee of the path. Six edges must b
distinguished, as the edgesUL andLU could well have dif-
ferent associated lengths. This is because ‘‘length’’ co
represent some generalized cost, such as the time a tra
would have to wait for a lift. We discretize the problem b
assuming that for alle, l (e) is either zero or one. Thus for a
p, L(p)P$0,1,2,3%.

The obvious question a traveler would like to ask is, wh
is the shortest path? Unfortunately, this is not the sort
question that Grover’s search algorithm will answer straig
away. Rather, what it can answer is questions like, wha
the path of length 1? If there is exactly one path of length
Grover’s algorithm will find it. If there are none or two path
of length 1, Grover’s algorithm will return one of the fou
paths at random. If there are three paths of length 1, Grov
algorithm will actually return the only path that isnot of
length 1. Thus, what Grover’s algorithm really does in o
case, is to return a numberp which means that pathp, or
none of the paths, is the odd one out with respect to hav
the lengthL. Here the odd one out is the only one having,
the only one lacking, a property.
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With a little thought it is apparent that actually we are n
limited to making a demand about a specific lengthL.
Rather, we can demand information about a setS of lengths
L. Since the total lengthLP$0,1,2,3%, there are seven suc
sets,

S15$0%, ~8.2!

S25$1%, ~8.3!

S35$0,1%, ~8.4!

S45$2%, ~8.5!

S55$0,2%, ~8.6!

S65$1,2%, ~8.7!

S75$0,1,2%. ~8.8!

There are other nontrivial subsets of$0,1,2,3%, but they are
the complements of the above seven sets, so they would
to demands already covered by the above seven sets. Sp
cally, the seven demands we could make on our comp
are, with j P$1, . . . ,7%: What is a pathp such thatp, or none
of the paths, is the odd one out with respect to having
lengthL(p)PSj?

In a ROM-based computation, there are six ROM bits
encode the lengths

l BL , l BU , l LU , l UL , l LE , and l UE ~8.9!

and three to encode one of the seven setsSj ,

j 0 , j 1 , and j 2 , ~8.10!

where these are the bits in the binary representation ofj. The
values of the nine ROM bits thus code for 448 differe
instances of the general problem.

Note that the binary representationj 2 j 1 j 0 of j is related to
the setSj as follows:

Sj5$L: j L51%. ~8.11!

Using this we can construct a solution to the above prob
by the following circuit:
~8.12!
6-9
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The first pair of Hadamard gates@1# puts theu0000& state
into the state

~1/2! (
p50

3

up&u00&, ~8.13!

where the lower two qubits, encoding the path, are in a
perposition of all four possible paths. The next six gat
conditioned on the six ROM bits storing the lengths of t
edges, use the upper pair of bits to count the length of e
path. For example,

UBLup&uL&5up&uL1x@BL,p#&. ~8.14!

Here x@H# is the characteristic function, equal to 1 if i
argumentH is true, and zero otherwise, while ‘‘BL,p’’
means ‘‘BL is an edge in path numberp.’’ These functions
are ‘‘hard wired’’ in the gate construction, as they depe
only of the geometry of the network in Eq.~8.1!, not the
lengths. The addition in Eq.~8.14! is defined modulo 4,
which is reversible on two bits, so that this is a well-defin
gate. After all six such gates have acted, the state of
processor is

~1/2! (
p50

3

up&uL~p!&. ~8.15!

Upon this superposition of all paths, and their associa
lengths, we now act the sign change that is at the hear
Grover’s algorithm. The three gates controlled byj 54 j 2
12 j 11 j 0 produce the overall phase shift

up&uL&→~122x@LPSj # !up&uL&. ~8.16!

This changes the sign of the components of the superpos
~8.15! for which the length is in the specified setSj . After
the application of the inverse of the six controlled ga
UBL•••UUE, the processor is in the state

~1/2! (
p50

3

$122x@L~p!PSj #%up&u0&. ~8.17!

Past experimental implementations of Grover’s algorit
@25–27# have relied upon a nonclassical oracle that takes
processor directly from a state like Eq.~8.13! to one like Eq.
~8.17!. In that case, the upper pair of qubits in Eq.~8.12! are
of course superfluous. For these experiments, where the
no real problem being solved, such an oracle seems rea
able enough. However, in the context of the present probl
which relates to a ‘‘real-world’’ situation—the networ
~8.1!—an oracle like this would indeed be magical. T
point of the above analysis is to show that, with the help
just two additional qubits, the required oracle can, nevert
less, be implemented in a realistic manner, using ROM ca

A Grover iterate is complete with the application of Ha
amard gates to the lower pair of qubits, and a phase cha
to the u00& state@32#. In this case, because the number
paths is four, a single Grover iterate suffices. The final s
of the algorithm is to apply the Hadamard gates again. A
this, the state of the lower pair of qubits of the processo
upj&, where p5pj is the unique solution ofL(p)PSj or
L(p)P S̄j , where S̄j is the complement ofSj . If neither of
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these equations have a unique solution, then the final sta
a superposition of all possible paths, as in Eq.~8.13!. Thus it
is apparent that this algorithm does indeed fulfill a dema
of the form above.

The above algorithm is certainly not space efficient. Fro
the results of Ref.@9# it follows that even a classical com
puter could solve this problem with a two-bit processor~al-
though probably in more steps!. Nor do we claim that it is
time efficient. A classical four-bit processor may well be ab
to solve the problem in fewer steps. However, it would
interesting to determine what the effect would be if o
stipulated that the three demand-specifying ROM bits~the
bits of j ! only be used once, as in the above quantum al
rithm. A similar ‘‘once-only’’ constraint on information ac
cess was considered in Ref.@17#

A lack of both time and space efficiency for this particul
algorithm would not render it worthless. Consider the on
qubit ROM-multiplication algorithm in Sec. IV. The specifi
instances of that algorithm we discussed and experimen
implemented were not time efficient. However, when sca
up to larger numbers of ROM bits, the algorithm was~we
conjectured! time efficient compared to the minimal~two-
bit! classical processor needed to solve this problem. S
larly, for large problems, a suitable generalization of th
ROM-based Grover algorithm would, we hope, become q
dratically time efficient compared to any classical algorith

If Grover’s algorithm cannot be applied to ‘‘real-world
problems in this way, then it is of very limited utility. Argu
ments pointing to the generality of its quadratic speed up
large problems have been made by two groups. First, B
sard, Høyer, and Tapp@33# showed how Grover’s algorithm
can work even if the number of ‘‘marked’’ elements is u
known. Second, Cerf, Grover, and Williams@34# claimed
that Grover’s algorithm can make use of the structure o
large scale problem in the same way as classical searc
gorithms, and thus maintain a quadratic speed up. Howe
serious doubts on this matter have also been expressed@35#,
so the question remains open.

Experimentally implementing the above four-qubit alg
rithm is well beyond the scope of this study. We have n
even compiled it into the appropriate ‘‘machine languag
~NMR pulse sequences!. However, this could be done alon
the same lines as the other algorithms presented here, by
decomposing the four-qubit gates in Eq.~8.12! into se-
quences of one- and two-qubit gates. We hope that the c
lenge of experimental implementation on this, or some si
lar algorithm, is taken up. Although it would still be only
toy calculation, it would be a significant step on the w
towards full-scale calculations of difficult problems pertai
ing to real-world situations.
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