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Read-only-memory-basd®OM-based quantum computatiofQC) is an alternative to oracle-based QC. It
has the advantages of being less “magical,” and being more suited to implementing space-efficient computa-
tion (i.e., computation using the minimum number of writable qubitéere we consider a number of small
(one- and two-qubjtquantum algorithms illustrating different aspects of ROM-based QC. They(are
one-qubit algorithm to solve the Deutsch probleth) a one-qubit binary multiplication algorithmr) a
two-qubit controlled binary multiplication algorithm; arid) a two-qubit ROM-based version of the Deutsch-
Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance
ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit
algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for
ROM-based quantum computation. We propose a four-qubit algorithm, using Grover’s iterate, for solving a
miniature “real-world” problem relating to the lengths of paths in a network.
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. INTRODUCTION oK)y =K) 1@ f(k)), (1.2

The current excitement in, and perhaps even the existenagherea represents bitwise addition modulo 2. Note that we
of, the field of quantum computatidi] is due to the dem- are defining an oracle so that it can be applied to classical bit
onstration that quantum computers can solve problems igtrings as well as to qubit strings.
fewer steps than classical computg2s-6]. An improvement Although the concept of an oracle is very useful in the
is rigorously established for the Deutsch-Josza algoritBm  context of complexity theory, they are, as their name sug-
and for Grover's search algorithfi], while Shor’s factor- gests, somewhat “magical” in their operation. Thus they
ization algorithm{4] uses exponentially fewer steps than anymay hide a great deal of computational complexity in one
knownclassical algorithm. step, and for this reason can be considered “unreali$f¢.”

It is interesting that, of the above quantum algorithms,In a quantum context, it has been suggested that counting
those that are provably fast&) are not exponentially faster, oracle calls may be a poor way to study the power of algo-
and (b) make use of an oracle. An oracle is a “black box” rithms[8]. Finally, it seems to us that oracle-based comput-

that defines a function ing is best for studying time efficiency, rather than space
efficiency.
f: Zon—>Zpm. (1.1 All of these factors suggest that it is worth exploring an

alternative basis for computation. In this paper we explore
Here 7y is the natural numbers moduldN, that is, quantum computation based on ROkad-only memory
{0,1, ... N—1}. The oracleO; acts on an-qubit string|k),  In an earlier papef9] two of us and co-workers showed that
and anm-qubit string|l) as follows: a ROM-based quantum computer is more space efficient than
a ROM-based classical computer. Here space efficiency is
defined in terms of the number wfritable qubits required. In
*Electronic address: H.Wiseman@gu.edu.au particular, one writable qubit is sufficient to compute any
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binary function of an arbitrary number of ROM bits, whereascomputation. These stipulations are necessary to keep the
two writable bits are needed to achieve the same. Also, for aomputation nondissipative.
particular one-bit functionmultiplication of all the ROM Before proceeding, let us establish some notation. We will
bits) evidence was found to support the conjecture that ongrite the n-bit (or qubib representation of a numbere Z,n
qubit can solve the problem in polynomial time, whereasas |x). This is equivalent to the notation|x)
threebits are required for the same. =]Xn_ 1) Xn_2)- - -|X1)|Xo), where x=3,%,2P. In a “cir-
These results indicate that ROM-based computation igyit” diagram, the most significant bikx,_ ), will appear at
ideal for demonstrating space efficien@nd possibly time  the pottom of the diagram, and the least significant|tj)
efficiency on small scale quantum computers. Of course, akt the top.
the moment small scale quantum computers are all we have \we ysed this notation already in E@..2) to specify the
experimentally. For example, in ion traps the number of qu-ction of an oracle that implements the functfotefined in
bits that can be coherently controlled is at most fpl@],  Eq. (1.1). In ROM-based computation, the functibnhat is
and in nuclear magnetic resonan@MR) experiments on  the subject of the computation is implemented not by an
ensembles of molecules, the number is at most sEVEnIN  gracle. but by its valuesf (k):k e Zy} being stored in read-
this paper we explore the space-efficient quantum algorithmémy memory. Specifically, fof as defined in Eq(1.1), N
in Ref.[9], as well as other ROM-based quantum algorithms,c .y ROM bits are required to store the function. For the
in an NMR context. _ simple casan=1 (a binary function, we requireN bits that
The structure of this paper is as follows. In Sec. Il weq,id be allocated ady.fy, ... fn_1, where f =f(K).

review ROM-based computation as defined in R81. I these ROM bits are not counted in the size of the computer.
Sec. Il we present the simplest space-efﬁuent one-qubit alrhat is to say, the size of the computer is taken to be the
gorithm (which solves Deutsch's problemSection IV cov-  nmpber of additionainon-ROM (qubits.

ers the one-qubit ROM-multiplication algorithm of RgeJ. To capture the essence of read-only memory, we impose
In Sec. V we present a two-qubit version of this, the con-he following constraints.

trolled ROM-multiplication, which is also provably more (1) The ROM bits{f, :k} can be prepared only in a clas-
space efficient than any classical algoritffmhich would  gja state.

require three bifs In Sec. VI we explore the Deutsch-Josza (2) For any gate involving the writable qubits, asingle

algorithm using ROM rather than an oracle. In Secs. Il-VIpay hit, f, for somek, may act as aadditional control bit.
we present experimental results following the theory. We dis- (3) No other gates involve the ROM bits.

cuss these results, and how they compare with a probabilistic These three conditions together imply that the ROM bits

classical computer, in Sec. VIl. We conclude in Sec. VIl i ajways remain in the same state. In finite state automata
with a discussion of future prospects for ROM-based quanyqels, space-bounded computation can be discussed using
tum computation, and in particular we propose a four-qubitryring machines with two tapes, one of which is read only
demonstration of quantum computing solving a “realistic” r7] Thjs is clearly very similar to the present idea of indi-
problem(i.e., a problem that can be related to the real world,;;q, 51y accessed ROM bits. The necessity for placing a con-
and that would require more than a second of human thougRliraint ‘on the number of ROM bits that can act as simulta-
to solve. neous control bits was discussed in Réf.
The restriction to single-bit ROM access leads to a sim-
Il. ROM-BASED COMPUTATION plification .in the represe'ntation of ROM in circu!t _diagrams
of reversible computation. Rather than explicitly using
We consider quantum computation using qubits, the num*wires” to represent the ROM bits we will simply leave a
ber of which remains fixed throughout the computation. Thespace at the top of the diagram, and write which ROM(bit
computer evolves by the operation gétes which imple- any) is acting as the extra control bit for that gate. This
ment a unitary operation on one or more qubits simultasuggests an alternative way to conceptualize the replacement
neously. It has been show2] that a single two-qubit gate, of the oracle by ROM. An oracle is like an all-knowing per-
such as the controlledoT gate, supplemented by all one- son who refuses to divulge information except when asked a
qubit gates, is sufficient to perform all possible quantumquestion in a certain way. ROM is like a committee of people
computations in this model. Unitary gates are of course rewho each have one bit of information but who refuse to
versible. This means that in principle the computation can beommunicate with one another except by acting individually
carried out without dissipation of information and henceupon a device. In this way problems in ROM-based quantum
without energy cosf1,13]. computation can be seen to have some similarities to prob-
To make a fair comparison with unitary quantum compu-lems in quantum communication such as in Rgf&-18.
tation, we must consider reversible classical computation. As As a final remark on our ROM-based model of computa-
is well known, universal reversible classical computation istion, we restrict ourselves, as in Rg], to deterministic
not possible with just one-bit and two-bit gates. Rather, acomputation. That is, we consider only algorithms tfiét
three-bit gate such as the Toffoli gate or Fredkin gate idmplemented perfectly have zero probability of error. It
required[14]. The measurement of the state of the qubiits  might be thought that a finite probability of error should be
the computational basigakes place only at the end of the acceptable if one is not concerned with time as a resource,
computation. Similarly, initializatior{setting a bit to a fidu- because repeating the original algorithm will eventually lead
cial state such d®)) is allowed only at the beginning of the to the correct answer with arbitrarily small error. This is not
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a valid argument because repetition is useful only if the re- If the function is constant, then either it never leaves the
sults of trials are remembered, and this uses resourcestate|0), or it is rotated byN X (277/N)= 27 around they
namely, bits, which must be included in the space cost of thexis, returning it to the stat®). If the function is balanced,
computation. An asymptotically small error could in generalit is rotated by (N/2) X (27/N) = 7 around they axis, putting

be achieved in this manner only by using a log asymptotiit into the state1). If it is neither balanced nor constant it

cally large number of bits. will end up in a superposition dD) and|1), so a measure-
ment will yield either result. This computation clearly solves
IIl. ONE QUBIT SOLUTION TO THE DEUTSCH the Deutsch problem. If the measured staté the computer
PROBLEM is 0, the answer returned {8). If the measured state is 1,
the answer returned i#\).
A. Theory To show the superiority of a space-bounded quantum

The smallest quantum computer is obviously one qubit. I€Omputer over a space-bounded classical computer we sim-
turns out that this, plus additional ROM bits rather than arPly have to prove that a one-bit classical computer cannot
oracle, is sufficient to solve the Deutsch problghfor any ~ solve the DJ problem. Consider the simplest case, where
n. The Deutsch problem can be phrased in the following way= 2, so thaf maps{0,1,2,3 to {0,1}. Since the only possible
Given a function of the form(1.1) with N=2"=4 andm  one-bit gate is avoT gate[N], which obeys[N]°=1, the

=1, find a true statement from the following list. only one bit operation for this problem is
(A) f is not balanced.
(B) f is not constant. [N] oPo* fPa*f2pa*faps, (3.9

A constant functiorf is one for whichZ, f(k)=0 or N;
that is, for whichf(k)=0Vk or f(k)=1Vk. A balanced Where eaclp, e {0,1}. Acting on the initial state 0, this com-
functionf is one for which=f(k) =N/2. Clearly one ofA) ~ putes the functionakp,f, modulo 2. It is trivial to prove
and (B) must be true, and they both may be true in whichthat this functional does not distinguish between balanced

case either can be chosen. and constant functions for any choice mf,p1,p2.Ps-
Deutsch and JoszdJ) found a quantum algorithm that
solved this problem using+1 qubits and two oracle calls B. Method

[3]. By replacing the oracle with2ROM bits, we are able to

solve the problem with a single qubit and with one control
from each ROM bit. If we were concerned with time effi-
ciency, the exponential number of “ROM calls” may seem a
problem. However, here we are concerned only with spac

The sample used for all of the following experimental
demonstrations was a O/l solution of heavy chloroform,
13CHcl,, dissolved in D6 acetone, GBOCD; (for locking
gurposes Chlorine isotopes®Cl and *’C| have large quad-
rupole momentsl(=3/2), resulting in extremely short relax-

efficiency. F
The one-qubit algorithm to solve this problem is very ation times when covalently bonded, on the order of 6.
simple This has the effect of masking scalar coupling between chlo-

rine and other nucldi20]. Thus, the chloroform molecule is
o f effectively a two-spin system, proton and carbon 13, Wwith
! N-1 =1/2 for both spins.
All spectra were obtained using a Bruker DRX-500 spec-
}y—{T\T}y_' ’ _[QW”]y_(>=a; (3.D  trometer, for which the magnitude éf, was approximately
11.6 T. The resonance frequencies of the proton peaks were
The computer is prepared in the fiducial sta@y. Each  ;,=500.137849 MHz andc=125.777 54749 MHz. The
ROM bit, fy e {fq,fq, ... ,fy_1}, in turn controls(indicated  scalar coupling was measured to be (214.8-0.5) Hz.
by the vertical ling a rotation on the qubit with unitary op- Clearly,J<|vy— v/, so that the two spins can be resonantly
erator[27/N]y . That is, the gate is implemented if and only excited independently. There is more than 1 kHz separation

if f,=1. Here we are using the notation to the solvent lines, which thus played no part in the experi-
_ ment. All experiments were performed at a temperature of
[0]l.=exd —i(0/2)0,], (32  (298+0.1) K. The measured values for the longitudiial

and transvers& (including field inhomogeneity effedtse-

where o, are the usual X2 Pauli matrices, witha laxation times wereT,(H)=(9.7+0.2) s, T,(C)=(11.0
e{X,y,z}. For the standard representation of these matricesio_z) s, Ti(H)=(6.4x0.3) s and T%(C)=(0.2

the basis states are +0.01) s. The maximum pulse program time was approxi-

mately 20 ms, significantly less than all of the above values.
|0)= ( 1) I11)= ( O) _ 3.3 For the one-qubit algorithms, the H nucleus was used as it
0/’ 1 had a far narrower linewidth. The initial state is the thermal
equilibrium state, which has a small excess spin in the lon-
In Eq. (3.1), the measurement is represented symbolically bygitudinal direction(spin up. This pseudo-pure-staf@1] has
an eye X, and yields the result, a single bit. That this is a observable signal proportional to that of stHg, as desired.
classical piece of information is represented by the doubleA one-qubit gate can be implemented by an appropriately
rather than single, wire. phased transverse magnetic field pulseshort sequence of
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IV. ONE-QUBIT MULTIPLICATION
0000 0011 1111
A. Theory
F=1 F=0.89 F=0.86

The above results demonstrate that a one-qubit quantum
computer can solve problems that no one-bit classical com-
puter can. By adding one more classical bit, the problem can

be solved(this is always true, as shown in Ré¢f]). More-

FIG. 1. Spectra for H nucleus showing the implementation ofover, there is a two-bit algorithm that is just as time efficient
our one-qubit solution to the Deutsch problem. The values of theas our quantum algorithm abowgt uses the two bits to tally
four ROM bits are shown above each spectrum. The fideliigs  the f,'s modulo 3, and is based on the fact that finiod 3
are also shown. =2 then 2" !mod 3=1 and vice versa.

In this section we consider another one-qubit algorithm,
which is also impossible on a one-bit computer, and which is
conjectured9] to be more time efficient than any two-bit
algorithm. It also solves a more natural problem than the DJ

pulses, rotating at the resonantradio frequency of the
nucleus. If a particular gate is ROM controlled then it is

implemented only when the value of the controlling ROM bit ! .
is one. Following the complete pulse sequence;/atrans- Erobleml,J naTr?lzly, u;ufjlr?]dalthoeritrrw)rrw?dduecrﬁvgg ir?gglg]brg?
verse pulse is used to shift longitudinal spin into the trans- lljiré;s',ex';'ctl quROM callsgfor N a power of two. and
verse plane, where its precession will induce a signal in the r (N?) othervx%se The required numbeFr) of ROM ca1|f;_or a
coils _(the readout A positive spectrum indicates an EXCESS\0-bit classical computer was found by numerical search to
of spin-up populations before the readout pulse was applie er=1,359 forN=1,2,34. It is conjectured thatN) is
The presence of th&’C nucleus, with almost equal popula- ;e b’y the recursion ;.eiaﬁor(N):r(N_1)+2[N/2J, and
tion spin up and spin down, causes a frequency splitiing Ofhere js"an obvious classical algorithm requiring exactly this
J/2. Thus the observed spectra for the two logical states argany ROM calls. This formula is clearly asymptotically ex-
of the form ponential inn, but is actually smaller than tHé¢?* ROM calls
in the quantum algorithm foN=2, 4, and 8.

| | In the experiment we only implemented the quantum al-

0) : —— 1) |_| 3.5 gorithm for N=2 andN=4. The one-qubit algorithm that
' determinesu; X u, can be constructed as follows.

s Al . Uy Uz U Uz
The fidelity of the transformation is calculated by dividing

R .
the area under the spectrum by that which would have arisen ) O I g ur XU 4.1
from a perfect transformation of the thermal signal. Since the | Hz]ﬁ ]T[ 2]_%'—[ ]””_1}: 1o @y

final readout is equivalent to the average of the results of, an abuse of our notation, we will indicate the above algo-
projective measurements in tlg basis of each member of ithm as
the ensemble, the area rafcan be considered to be due to

a mixture of the correct resultvith probability F) and the U1 X U

incorrect resuli{with probability 1-F), namely,R=F—(1 |

—F). Thus the fidelity is calculated d&5=(R+1)/2. _[W]y— (4.2)
Similarly, a gate effecting the transformatipr: /4], ,

C. Results conditional onu; X us, is
The Deutsch problem has a deterministic output if one

adds the promise that the functidnis either balanced or Uy U U Uz Uy XUz

constant. In this case outp() indicates thaf is constant | | ’ \ |

and (B) that it is balanced. WitiN=4, this means that in —{iﬂ;{ﬂg{¢§]ﬁ7"b— = [ig]f‘ 4.9

effect there are only three different pulse sequences arising

from the algorithm in Eq(3.1): that in which all values of ~ These operations can be combined to construct an algorithm
are zero, that in which two are one, and that in which all fourthat determines the answar=u; X u;X uzX Uy, Viz.

are one.

The results of these three different pulse sequences are | | | |
shown in Fig. 1. We see that the results agree well with the (4.4)
theory. The first case consists of doing nothing, so its fidelity |0>_[—§]x—[77]y_ [%]I—“[W]y——(’—— a
is one, by definition. The fidelity of the other cases is calcu-

UL X U2 U3 X UL UL XU U3 X U4

lated as described above. The average fidétiking into B. Results
account that there are six possible ways in which the func- The results shown in Figs. 2 and 3 were obtained by the
tion can be balanceds F=0.9. method outlined above. Again we see good agreement with
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00 01 foli [19] that multicontrolledvoTs cannot be built from
F=1 F=0.98 single controlledvoTs without the use of an auxiliary writ-
able bit.
10 » For the casen=2, the circuit is
F=0.99 \ ~ F=0.91

Uy U2 U U2
I R I
O3 il [ 5]l @1 X xus
FIG. 2. Spectra for the H nucleus for the one-qubit algorithm for i | ’ ‘
multiplying two ROM bits (shown asu,u,). A small systematic $1>—'_°——°——°~(>= T
error is evident in the dispersive features seen in the last case. Other
details are as in Fig. 1.

(5.7

_ Here the solid circles on the wire for the second qubit indi-
theory. The average fidelity was=0.97 in the case of mul-  cate that it acts as a control qubit for the relevant gate.
tiplying two ROM bits, andF=0.92 for multiplying four
ROM bits.

B. Method

V. TWO-QUBIT CONTROLLED MULTIPLICATION In addition to the selective rf pulses tuned to the H and C

A. Theory nuclei, the two-qubit algorithm requires an interaction be-

. . . . ... _tween the nuclei. This occurs simply by leaving time be-

It is simple to generalize the above single-qubit algonthmt een thenegligibly shor} pulses for the spin-spin coupling
(with a space advantage of one bit compared to CIaSSiC%YVamiltonian
computation to a two-qubit algorithm also with a space ad-
vantage of one bit. This is done by requiring the calculation
of u;Xu,X---u,Xxq, wherex, is the value of the second
writable bit. The modified algorithm is identical to the one in
the preceding section, except that all of the ga&telsich act
on the first bit|xy)) are controlled by the second bit as
well as by all of the ROM bits. That this cannot be done on
a two-bit classical computer follows from the proof by Tof-

H=hJo!oS/4 (5.2

to act. These periods of free evolution are usually of duration
1/4J or 1/23, and are simply denoted by this time. For ex-
ample,

F=1 F=0.99 F=0.89 1 _ 1 e
oo& B og L 0010\ [ZJ =exd —iH(1/2)/%]= \/5[1 io,o;]. (5.3
F=0.92 F=0.97 F=0.92
OO_HJ | Oﬁ L orot The two-qubit algorithm also requires a pure initial state.
A pseudo-pure-stat0) of both spins(H and Q up can be
F=0.51 F=0.90 F=0.91 prepared from the thermal equilibrium state by a sequence of
0110 011l 1 rf pulses, free evolution, and gradient pulses. The last of
these effectively removes the transverse spin of the sample.
That is, it diagonalizes the state matrix into the logical basis.
F=0.91 F=0.90 F=0.98
1001 1010 1011 We use the pulse sequence of Cetyal.[22], but change the
ey G W [ 7/6], pulses for both spins into[a- 7/6], pulse. This is to
ensure that the signal is that for the pseudo-pure-$Gile
F=0.90 F=0.92 F=0.91 rather than the negative signal, which corresponds to a state
1100 1101 1110 matrix | —|00){00|, wherel is the 4x 4 identity matrix. In
— — A theory, this pseudo-pure-state preparation procedure results
in a signal reduction by 3/8 compared to the original thermal
F=0.85 equilibrium state.
1111 | (_ The readout is done identically to the one-qubit case. The
correspondence between the logical states and the observed

spectra is more complicated. The single resonance peak for
FIG. 3. Spectra for the H nucleus for the one-qubit algorithm foreéach spin is potentially split into a doublet, @t- 7J. With
multiplying four ROM bits(shown asu;u,usu,). Small systematic the NMR convention of frequency increasing from right to
errors are evident in the dispersive features seen in most casdeft, the spectral shapes for the four logical states are as
Other details are as in Fig. 1. follows.
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State Hydrogen Carbon Hydrogen Carbon
ooy —L 100>,00
o)y — 1 F=0.93 J
I — (5.9
- 005,01 L
A ! F=0.83 . A
As in the one-qubit cases, for calculating the fidelity we
are interested only in the occupation of the logical states, 100>,10 l
since our computation is meant to be deterministic. We inte- F=0.92
grate under the spectra at the four frequencies, and divide by 100511 l
0.375 of the area of the original thermal state. The 0.375 is F_o ’83 —
due to the theoretical signal loss in the pseudo-pure-state -
preparation described above. This procedure gives a number
linearly related to the occupation probabilitieg, P1o, Po1. [10>,00 l
and p,;. For example, the area ratR’ under the left hy- F=0.89 "

drogen peak should satisfy

[10>,01

RI'=p1o—P11- (5.9 F=0.81 Y
In addition, the probabilities should sum to unity. Thus we [105,10 J
have five equations in four unknowns, which we solve by a F-0.85

least-squares method to yield the probabilities. If the desired
outcome is|11), for example, then the fidelity equats; .
The above algorithm requires four controlled gates. These 10,11 T Y
can be constructed from resonant pulses on the two nuclei,  F=0-78
plus periods of free evolution of duration 1I/2r 1/43. Spe- FIG. 4. Spectra for the H and C nuclei for the two-qubit algo-

cifically, rithm for multiplying two ROM bits, controlled by the fir¢C) bit.
The initial pseudopure states of the two bits are shown with the

—{E]x— —{g]—[ %]—y—[—%]x—f—-ﬂb— spectra, along with the ROM biishown asu;u,). Small system-

- atic errors are evident in most cases. Other details are as in Fig. 1.

[

56 from |0) to |1). This state]10), was prepared with fidelity
0.89, as shown for the case where the ROM bits are 00. As
. - - . expected, all spectra but the last also haye 0, and the last
_[_5]3—:_- _[—i]y 1 E]y—[_z}z showsxy=1.
l - Y The raw fidelities, calculated as discussed above, are
- Lo shown in the figure. Let us scale out the fidelity of the initial
state preparatiofthat is, divide the raw fidelities by 0.93 for
and the first four spectra and 0.89 for the last fpuand take the
average. Then we get a mean fidelity for the implementation

- % - 1H%E]T of the algorithm ofF =0.94.

— — 1 . VI. TWO-QUBIT ROM-BASED DEUTSCH-JOSZA
L J (5.9
ALGORITHM
wheren is an axis defined by= (x+y)/\2. A. Theory
C. Results We saw in Sec. lll that the Deuts¢B] problem can be

The pseudo-pure-statg0) was produced with fidelity of solve_d on a ROI\/_I-base_d computer with a single qubit. This
0.93. This appears as the first line of Fig. 4, which is adlgorithm was quite unlike that proposed by DeutfZhand
running of the controlled-multiplication algorithm when the Deutsch and Joszg8]. In this section, we investigate the
ROM bits are 0Q(i.e., nothing is done The results for the implementation of the Deutsch-Josza algorithm on a ROM-
other possible ROM values appear in the next three spectr@ased computer. This requires at least two bits to solve the
All four of these spectra are the same, as they should bBeutsch problem. Our motivations here thus do not include
since the contro{carbon qubit being set to zero means that space efficiency. Instead, they are as follows.
Xo=X1XU1XU,=0. The last four spectra are repeats of the First, as noted in the Introduction, ROM-based computa-
first four, but with the contro{carbon qubit initially rotated  tion seems more realistic, so it is interesting to see how it can
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be applied to an apparently quintessentially oracular algo- Carbon Hydrogen
rithm.

Second, there is a question of interpretation of past ex- 0000
periments. Again as noted in the Introduction, an oracle F=0 86
should be definablgsee Eq(1.2)] by its action on a classical U

computer. This is necessary in order not to give an unfair
space advantag®f m qubity to a quantum computer. This

requirement is met in the original theoretical proposals of 0011

Deutsch and Jos4&] and Grovelf 6]. However, it is not met F=0.75
in proposals such as that in the “refined” Deutsch-Josza al-

gorithm of Ref.[23], implemented in Ref{24]. That is be-

cause in this algorithm the oracle directly produces phase 318181

shifts, which have no classical analog. The requirement of
Eq. (1.2) would also rule out the oracles implemented in
other NMR experiment$25—-27 (but not to those in Refs.
[28—30). Our analysis here will show that these experiments 1001
can be very easily reinterpreted in terms of ROM calls rather F=0.76
than oracle calls.

Third, there is a question of how quantum the Deutsch-
Josza algorithm is. The use of a nonclassical oracle allows 1111 '
the Deutsch-Josza algorithm to be implemented using one F=0.75
fewer qubit ( rather thann+1). The same numben) of
qubits are required for the ROM-based implementation. Fo[)a
the minimal casen=2, it was shown in Ref[23] that with
the nonclassical oracle, the Deutsch-Josza algorithm does n
utilize entanglement. On this basis, the authors claim that i
therefore “solves the Deutsch problem in a classical way.’

Leaving aside questions as to the meaning of “classical” infhe quantum computer are entangled. It is only because the
this context, we show that in a ROM-based implementation, mper of times the gates are applied is e¢eecause the
entanglement necessarily occurs. This suggests that the Spmction is promised to be balanced or constaimat the state
called classicality noted in Reff23] is due to the unrealistic 4t the end of the four ROM-controlled gates is not entangled.

nature of the oracle they use. Entanglement is required in all cases of this algorithm except
In the ROM-based implementation of the Deutsch-JOSzgyhen the function is identically zero.

algorithm, the ROM bits are the same as in Sec. lll, namely,

the binary valuedy, ... ,fy_4 of the functionf, which is B. Method

either balanced or constant. For the minimal chlse4 (n '

=2), the algorithm is We use the following realization of the two-qubit phase
gates:

)
Rpey

FIG. 5. Spectra for the H and C nuclei for the two-qubit ROM-
sed Deutsch-Josza algorithm. The ROM bits are shown as
faofoif10f 11- Note that the order of the carbon and hydrogen spectra
g(rfe reversed as compared to Fig. 4 and (Bgl). Small systematic
!Errors are evident in all cases. Other details are as in Fig. 1.

foo for fio Jfn

N _ A Heskee sk
'°>‘[%]j Ooﬂ%ﬂqsmu@ﬂ‘ﬂﬁz . I
0[5k —fLt=m 6.3

6.9

Here the four distinct two-qubit gateg,,; change the sign
of the logical statda), leaving the other three unaltered.
Mathematically, the operation of these gates can be e
pressed as

C. Results

The results are shown in Fig. 5. Comparing with the table
%5'4)’ we see that the result 00 is obtained only for the case
of function values 0000 and 1111, as expected. Results for
the values 1100, 1010, and 0110 were not obtained. If the
Bapl ¥8)=(1—28,,85)| ¥6). (6.2  algorithm implementation were perfect then the state after
the four controlled phase gates in these cases would be the
The resultx;x,= 00 indicates a constant function; any other same as for 0011, 0101, and 1001 shown in Fig. 5. There is
result indicates a balanced function. also no reason from the pulse sequence to expect the fideli-
The four ROM-controlled gates together have exactly theies to be very different for those cases implemented. We can
same effect as the nonclassical oracle introduced in Refhus take the cases shown as being representative, and use
[23]. This is an example of how any nonclassical oracle haghem to calculate an average fidelity over the eight possible
a ROM analog. The application of an odd number of thesdunctionsf. Scaling away the fidelity of 0.93 for the pseudo-
gates creates an entangled state, so the intermediate statepofe-state preparatiof@as in Sec. Y, we obtainF=0.84.
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VIl. DISCUSSION OF EXPERIMENTAL RESULTS experiment was performed with a fidelity of 0.92, so in this

. . instance the fidelity obtained by a probabilistic classical
The experimental r.esults ;hown charIy_venfy the ROM'computer is greater than that obtained with the quantum
based quantum algorithms discussed in this paper. The ave&)mputer

age fidelities of the algorithms were not unusually good for |, the case of two-qubit controlled multiplication, the

NMR experiments. They were 0.9, 0.97, and 0.92 for they,antum algorithm was implemented with an average fidelity
one-qubit algorithms, and 0.94 and 0.84 for the two-qubityf 0,94, Using a probabilistic classical computer, with two
algorithms. These fidelities are definitely correlated with theyyitaple bits, it seems that the best we can do is guess 0,
length of the pulse sequence required. However, it is interwhich is correct 7/8 of the time. Thus, the classical fidelity is
esting that the lowest fidelity0.84 was obtained for the pelow that of the quantum algorithm.

ROM-based Deutsch-Josza algorithm, which was not much |t should be emphasized that these conclusions result from
longer than the other two-qubit algorithm, but which differed a particular assumption about the prior probabilities of the
from it in that it used entangling operations. values of the ROM bits. With a different prior distribution,

The largest source of error was probably spatial and temthe average fidelity would be different in both the classical
poral variation in the intensity and phase of the rf pulses. Th@nd quantum caseest fidelity and obtained fidelity, re-
spatial variation of field strength is a direct consequence o$pectively.
limitations imposed by the structure of the coils, being small  Finally, the ROM-based Deutsch-Josza algorithm cannot
Helmholtz coils. Cummins and Jon¢31] provide a good demonstrate any space-efficiency even for unit fidelity. It
discussion of the errors incurred in NMR computing andwas implemented for a different reason, as explained in Sec.
explain how the systematic errors dueHg field innomoge- V1.
neities can be greatly reduced. We did not attempt to apply
these techniques.

Any implementation of a quantum computer will involve
some level of errors, and therefore generate fidelities less |n this paper, we have presented a number of ROM-based
than one. This brings into question the space efficiency ofjuantum algorithms for one- and two-qubit processors. One
quantum computation. That is, an algorithm with nonunitof these(one-qubit multiplication was derived in Ref[9].
fidelity implemented on a quantum computer would lead to arhe others are a one-qubit algorithm solving the Deutsch
wrong answer some of the time, and so a probabilistic C|aSprob|em, a two-qubit controlled-multiplication algorithm,
sical computer may be able to do as well. Let us compare thgnd a two-qubit ROM-based Deutsch-Josza algorithm solv-
fidelities we obtained in experiment with what a probabilisticing the Deutsch problem. For all algorithms we have also
classical computer could do. presented experimental verification, using NMR ensemble

For the one-qubit Deutsch problem with=4, there are  quantum computing.
two constant functions and six balanced functions. Therefore All except one of the above algorithms demonstrated
a fidelity of 3/4 can be obtained with zero bits, simply by space efficiency, in that a classical computer would require
guessing the answer “balanced.” Suppose one has one writin extra processor bit to solve the problems. The exception is
able bit at one’s disposal. Using this writable bit, one canthe ROM-based Deutsch-Josza algorithm. We believe that
calculate the modulo sum of any or all of the ROM bits. future prospects for ROM-based quantum computation lie
Calculating the modulo sum of all ROM bits is pointless, more in the direction of this last example. There are two
because this is equal to zero for all constant and balance@asons. First, it follows from the results of RE] that the
functions. Likewise, the modulo sum of any one or any threemaximum space efficiency offered by ROM-based quantum
of the ROM bits gives no information. The modulo sum of computation is one bit, which could not be significant in
two ROM bits does give some information, as the result 1 iscomputations of a useful scale. Second, in showing how an
obtained for four out the six balanced cases, and never fasracular algorithm can be implemented on a ROM-based
the constant cases. Clearly if the result 1 is obtained oneomputer, the example of Sec. VI illustrates how time-
should choose “balanced,” but even if the result 0 is ob-efficient quantum computing could be implemented realisti-
tained, one might as well choose “balanced” as that will still cally.
be right half the time. Thus the uninformed guess average In the remainder of this section we will explore a future
fidelity of 3/4 is optimal. The obtained average fidelity of the prospect for ROM-based quantum computation along these
guantum algorithm, 0.9, is far above this. lines. We take as our basis not the Deutsch-Josza algorithm,

For the multiplication of two ROM bits, again the only but another famous oracle-based algorithm, proposed by
quantity that can be computed with one bit is the value ofGrover[6]. We will show how the oracle in this algorithm
one ROM bit, or the binary sum of both. By arguments simi-can also be implemented using ROM calls. We find a specific
lar to those employed above, it can be verified that this iSmplementation with two properties of interest. First, it is
useless in helping to guess the answer. Thus the most likelgxperimentally feasible in the short term, requiring only four
answer, 0, might as well be chosen, giving an average fidelqubits. Second, it solves a problem that can be related to a
ity of 3/4. Again, this is far below the obtained average fi- read-world situation(albeit a miniaturized one and that
delity of the quantum algorithm of 0.97. would require more than a second of cerebral processing

For the multiplication of four ROM bits, the uninformed time to solve.
best guess is again 0, and this is right 15/16 of the time. Our The problem we consider relates to the lengths of paths

VIIl. FUTURE PROSPECTS: A “REALISTIC” PROBLEM
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between two vertices in a networla set of vertices con- With a little thought it is apparent that actually we are not
nected by edges of differing length&ome problems of this limited to making a demand about a specific lendth
nature, such as finding the longest such path, are known to Rather, we can demand information about aSsef lengths
NP complete[7]. This is a class of problems that are almostL. Since the total length €{0,1,2,3, there are seven such
certainly exponentially hard to solve, and are thus of greasets,

practical interest.

Consider the network below, 5;={0}, 8.2
U S,=1{1}, (8.3
B/IT\\E 61 S;={0,1}, (8.9
8.1
\l/ S4=12}, (8.9
L S5=1{0,2}, (8.6)
There are four vertices, labeld® L, U, andE (for Begin, Se=1{1,2 8.7
Lower, Upper, and Engd linked by edges. These could rep- 6 imeh '
resent cities and roads, respectively. We are interested in the 5,=10,1,2. 8.9

length of paths fronB to E, as indicated by the direction of

the arrows in Eq(8.1). Assuming no back tracking, there are There are other nontrivial subsets {@f,1,2,3, but they are
four possible pathsBLE, BUE, BLUE, and BULE, to  the complements of the above seven sets, so they would lead
which we assign the numbers from 0 to 3. Each galtas a  to demands already covered by the above seven sets. Specifi-
length L(p) associated with it, equal to the sum of the cally, the seven demands we could make on our computer
lengthsl(e) of each edgee of the path. Six edges must be are, withj {1, ...,%: What is a patlp such thap, or none
distinguished, as the edged. andLU could well have dif-  of the paths, is the odd one out with respect to having a
ferent associated lengths. This is because “length” couldength L(p) €5;?
represent some generalized cost, such as the time a travelerin a ROM-based computation, there are six ROM bits to
would have to wait for a lift. We discretize the problem by encode the lengths
assuming that for ak, 1(e) is either zero or one. Thus for all
p, L(p)e{0,1,2,3. lgrs lsus lius lu, e, and Iyg (8.9

The obvious question a traveler would like to ask is, what
is the shortest path? Unfortunately, this is not the sort ofnd three to encode one of the seven Sgfs
guestion that Grover’s search algorithm will answer straight- : . .
away. Rather, what it can answer is questions like, what is Joo J1, and o, (8.10

the path of length 17 If there is exactly one path of length 1,y here these are the bits in the binary representatignTfe

Grover's algorithm will find it. If there are none or two paths |5 es of the nine ROM bits thus code for 448 different
of length 1, Grover’s algorithm will return one of the four ; «-ncas of the general problem.

pathg at random. If there are three paths of length _1, Grover's Note that the binary representatipsi |, of j is related to
algorithm will actually return the only path that ot of the setS: as follows:

length 1. Thus, what Grover’s algorithm really does in our !
case, is to return a numberwhich means that path, or S={L:j_=1}. (8.11)
none of the paths, is the odd one out with respect to having

the lengthL. Here the odd one out is the only one having, orUsing this we can construct a solution to the above problem

the only one lacking, a property. by the following circuit:
lB‘L e ZTE j|0 j[l j|2 ZEEL ... l[fE
IO .. ..__( 7 r T -_‘0>
10) 00 01 10 o)
Ust Uuve UsL j UE
OHHH - — = %Hﬂd’ FHHz Po
00
o—HEH ] e HEHD =y

(8.12
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The first pair of Hadamard gat¢4] puts the|0000 state these equations have a unique solution, then the final state is

into the state a superposition of all possible paths, as in Bj13). Thus it
3 is apparent that this algorithm does indeed fulfill a demand
(1/2)2 |p)|00), (8.13 of the form above._ _ _ N
p=0 The above algorithm is certainly not space efficient. From

. ) ) the results of Ref[9] it follows that even a classical com-
where the lower two qubits, encoding the path, are in a suputer could solve this problem with a two-bit proceséair
perposition of all four possible paths. The next six gatesthough probably in more stepsNor do we claim that it is
conditioned on the six ROM bits storing the lengths of thetime efficient. A classical four-bit processor may well be able
edges, use the upper pair of bits to count the length of eacto solve the problem in fewer steps. However, it would be
path. For example, interesting to determine what the effect would be if one

Ugdp)IL)=p)|L+x[BLCp]). (8.14) stipulated that the three demand-specifying ROM itee

bits of j) only be used once, as in the above quantum algo-
Here x[H] is the characteristic function, equal to 1 if its fithm. A similar “once-only” constraint on information ac-
argumentH is true, and zero otherwise, whileBLCp”  Cess was considered in Ré1L7] . , _
means BL is an edge in path numbegx” These functions Alack of both time and space efficiency for this particular
are “hard wired” in the gate construction, as they dependalgo_rlthrn WOU|d. not r_ender It yvorth_less. Consider the one-
only of the geometry of the network in E¢8.1), not the _qub|t ROM-muInpllcatl(_)n algorlthm in Sec. IV. The specmc
lengths. The addition in Eq8.14) is defined rﬁodulo 4, instances of that algonthm we .d!scussed and experimentally
which is reversible on two bits, so that this is a WeII—defined'mplememed were not time efficient. However, when scaled

. up to larger numbers of ROM bits, the algorithm wage
gate. After all six such gates have acted, the state of thggnjectugeaj time efficient compared to thg miniméawo-

processor is bit) classical processor needed to solve this problem. Simi-
3 larly, for large problems, a suitable generalization of this
(1/2)')20 Ip)IL(p)). (8.19  ROM-based Grover algorithm would, we hope, become qua-

dratically time efficient compared to any classical algorithm.

Upon this superposition of all paths, and their associated If Grovgr's glgorlthm cannot be app[|e(_j to “rg_al—world"
lengths, we now act the sign change that is at the heart (ﬂroblems.ln.thls way, then it IS of Very I|m|ted.ut|I|ty. Argu-
Grover's algorithm. The three gates controlled by 4j, ments pointing to the generality of its quadratic spegd up for
+2j,+]o produce the overall phase shift large problems have been made by two groups. Flrsfc, Bras-

] sard, Hgyer, and Tap33] showed how Grover’s algorithm
[P IL)—(1=2x[LeS]Ip)[L). (8.1 can work even if the number of “marked” elements is un-

This changes the sign of the components of the superpositio%nown' Second, Cerf, Grover, and Williani84] claimed

; - e that Grover’s algorithm can make use of the structure of a
(8.19 for which the length is in the specified sst. After large scale problem in the same way as classical search al-

tSe aprl)jlcatlcirr: of the inverse ?:] thet ;5|x controlied gatesgorithms, and thus maintain a quadratic speed up. However,
BL" " Yue, € Erocessor IS In the state serious doubts on this matter have also been expr¢8&¢d
} so the question remains open.
(1/2)’240 {1-2x[L(p) €5;1}|p)|0). (8.17 Experimentally implementing the above four-qubit algo-
rithm is well beyond the scope of this study. We have not
Past experimental implementations of Grover’s algorithmeven compiled it into the appropriate “machine language”
[25—27] have relied upon a nonclassical oracle that takes th&NMR pulse sequencigsHowever, this could be done along
processor directly from a state like E&.13 to one like Eq.  the same lines as the other algorithms presented here, by first
(8.17. In that case, the upper pair of qubits in £§.12 are  decomposing the four-qubit gates in E@.12 into se-
of course superfluous. For these experiments, where there gglences of one- and two-qubit gates. We hope that the chal-
no real problem being solved, such an oracle seems reasol@nge of experimental implementation on this, or some simi-
able enough. However, in the context of the present probleniar algorithm, is taken up. Although it would still be only a
which relates to a “real-world” situation—the network toy calculation, it would be a significant step on the way
(8.1)—an oracle like this would indeed be magical. Thetowards full-scale calculations of difficult problems pertain-
point of the above analysis is to show that, with the help ofing to real-world situations.
just two additional qubits, the required oracle can, neverthe-
less, be implemented in a realistic manner, using ROM calls. ACKNOWLEDGMENTS
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