686 research outputs found

    Free Rota-Baxter algebras and rooted trees

    Full text link
    A Rota-Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota-Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota-Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota-Baxter algebras were obtained by Rota and Cartier in the 1970s and a third one by Keigher and one of the authors in the 1990s in terms of mixable shuffles. Recently, noncommutative Rota-Baxter algebras have appeared both in physics in connection with the work of Connes and Kreimer on renormalization in perturbative quantum field theory, and in mathematics related to the work of Loday and Ronco on dendriform dialgebras and trialgebras. This paper uses rooted trees and forests to give explicit constructions of free noncommutative Rota--Baxter algebras on modules and sets. This highlights the combinatorial nature of Rota--Baxter algebras and facilitates their further study. As an application, we obtain the unitarization of Rota-Baxter algebras.Comment: 23 page

    Generalized Chaplygin gas as geometrical dark energy

    Full text link
    The generalized Chaplygin gas provides an interesting candidate for the present accelerated expansion of the universe. We explore a geometrical explanation for the generalized Chaplygin gas within the context of brane world theories where matter fields are confined to the brane by means of the action of a confining potential. We obtain the modified Friedmann equations, deceleration parameter and age of the universe in this scenario and show that they are consistent with the present observational data.Comment: 11 pages, 3 figures, to appear in PR

    Localization of gravity in brane world with arbitrary extra dimensions

    Full text link
    We study the induced 4-dimensional linearized Einstein field equations in an m-dimensional bulk space by means of a confining potential. It is shown that in this approach the mass of graviton is quantized. The cosmological constant problem is also addressed within the context of this approach. We show that the difference between the values of the cosmological constant in particle physics and cosmology stems from our measurements in two different scales, small and large.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:gr-qc/0408004, arXiv:gr-qc/0607067, arXiv:0704.1035, arXiv:0707.3558, arXiv:0710.266

    On CSP and the Algebraic Theory of Effects

    Full text link
    We consider CSP from the point of view of the algebraic theory of effects, which classifies operations as effect constructors or effect deconstructors; it also provides a link with functional programming, being a refinement of Moggi's seminal monadic point of view. There is a natural algebraic theory of the constructors whose free algebra functor is Moggi's monad; we illustrate this by characterising free and initial algebras in terms of two versions of the stable failures model of CSP, one more general than the other. Deconstructors are dealt with as homomorphisms to (possibly non-free) algebras. One can view CSP's action and choice operators as constructors and the rest, such as concealment and concurrency, as deconstructors. Carrying this programme out results in taking deterministic external choice as constructor rather than general external choice. However, binary deconstructors, such as the CSP concurrency operator, provide unresolved difficulties. We conclude by presenting a combination of CSP with Moggi's computational {\lambda}-calculus, in which the operators, including concurrency, are polymorphic. While the paper mainly concerns CSP, it ought to be possible to carry over similar ideas to other process calculi

    Shuffle relations for regularised integrals of symbols

    Full text link
    We prove shuffle relations which relate a product of regularised integrals of classical symbols to regularised nested (Chen) iterated integrals, which hold if all the symbols involved have non-vanishing residue. This is true in particular for non-integer order symbols. In general the shuffle relations hold up to finite parts of corrective terms arising from renormalisation on tensor products of classical symbols, a procedure adapted from renormalisation procedures on Feynman diagrams familiar to physicists. We relate the shuffle relations for regularised integrals of symbols with shuffle relations for multizeta functions adapting the above constructions to the case of symbols on the unit circle.Comment: 40 pages,latex. Changes concern sections 4 and 5 : an error in section 4 has been corrected, and the link between section 5 and the previous ones has been precise

    Comment on: Modular Theory and Geometry

    Full text link
    In this note we comment on part of a recent article by B. Schroer and H.-W. Wiesbrock. Therein they calculate some new modular structure for the U(1)-current-algebra (Weyl-algebra). We point out that their findings are true in a more general setting. The split-property allows an extension to doubly-localized algebras.Comment: 13 pages, corrected versio

    An algebraic scheme associated with the noncommutative KP hierarchy and some of its extensions

    Full text link
    A well-known ansatz (`trace method') for soliton solutions turns the equations of the (noncommutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the noncommutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the noncommutative KP hierarchy. Relations with Rota-Baxter algebras are established.Comment: 59 pages, relative to the second version a few minor corrections, but quite a lot of amendments, to appear in J. Phys.

    Towards Bottom-Up Analysis of Social Food

    Get PDF
    in ACM Digital Health Conference 201

    Overview of (pro-)Lie group structures on Hopf algebra character groups

    Full text link
    Character groups of Hopf algebras appear in a variety of mathematical and physical contexts. To name just a few, they arise in non-commutative geometry, renormalisation of quantum field theory, and numerical analysis. In the present article we review recent results on the structure of character groups of Hopf algebras as infinite-dimensional (pro-)Lie groups. It turns out that under mild assumptions on the Hopf algebra or the target algebra the character groups possess strong structural properties. Moreover, these properties are of interest in applications of these groups outside of Lie theory. We emphasise this point in the context of two main examples: The Butcher group from numerical analysis and character groups which arise from the Connes--Kreimer theory of renormalisation of quantum field theories.Comment: 31 pages, precursor and companion to arXiv:1704.01099, Workshop on "New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", May 25-28, 2015, ICMAT, Madrid, Spai

    Fast computation by block permanents of cumulative distribution functions of order statistics from several populations

    Full text link
    The joint cumulative distribution function for order statistics arising from several different populations is given in terms of the distribution function of the populations. The computational cost of the formula in the case of two populations is still exponential in the worst case, but it is a dramatic improvement compared to the general formula by Bapat and Beg. In the case when only the joint distribution function of a subset of the order statistics of fixed size is needed, the complexity is polynomial, for the case of two populations.Comment: 21 pages, 3 figure
    • …
    corecore