1,030 research outputs found

    Expectations in financial markets

    Get PDF

    Hierarchical Self-Programming in Recurrent Neural Networks

    Full text link
    We study self-programming in recurrent neural networks where both neurons (the `processors') and synaptic interactions (`the programme') evolve in time simultaneously, according to specific coupled stochastic equations. The interactions are divided into a hierarchy of LL groups with adiabatically separated and monotonically increasing time-scales, representing sub-routines of the system programme of decreasing volatility. We solve this model in equilibrium, assuming ergodicity at every level, and find as our replica-symmetric solution a formalism with a structure similar but not identical to Parisi's LL-step replica symmetry breaking scheme. Apart from differences in details of the equations (due to the fact that here interactions, rather than spins, are grouped into clusters with different time-scales), in the present model the block sizes mim_i of the emerging ultrametric solution are not restricted to the interval [0,1][0,1], but are independent control parameters, defined in terms of the noise strengths of the various levels in the hierarchy, which can take any value in [0,\infty\ket. This is shown to lead to extremely rich phase diagrams, with an abundance of first-order transitions especially when the level of stochasticity in the interaction dynamics is chosen to be low.Comment: 53 pages, 19 figures. Submitted to J. Phys.

    A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation

    Full text link
    We study the coupled dynamics of primary and secondary structure formation (i.e. slow genetic sequence selection and fast folding) in the context of a solvable microscopic model that includes both short-range steric forces and and long-range polarity-driven forces. Our solution is based on the diagonalization of replicated transfer matrices, and leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase diagrams at genetic equilibrium. The predicted phenomenology allows for natural physical interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.

    The XY Spin-Glass with Slow Dynamic Couplings

    Full text link
    We investigate an XY spin-glass model in which both spins and couplings evolve in time: the spins change rapidly according to Glauber-type rules, whereas the couplings evolve slowly with a dynamics involving spin correlations and Gaussian disorder. For large times the model can be solved using replica theory. In contrast to the XY-model with static disordered couplings, solving the present model requires two levels of replicas, one for the spins and one for the couplings. Relevant order parameters are defined and a phase diagram is obtained upon making the replica-symmetric Ansatz. The system exhibits two different spin-glass phases, with distinct de Almeida-Thouless lines, marking continuous replica-symmetry breaking: one describing freezing of the spins only, and one describing freezing of both spins and couplings.Comment: 7 pages, Latex, 3 eps figure

    Deeltijdwerkers hebben meestal al een lage marginale druk

    Get PDF
    Het kabinet wil dat mensen meer uren gaan werken, om de krapte op de arbeidsmarkt tegen te gaan. Maar loont het voor deeltijders wel om meer te werken? En in hoeverre spelen belastingen een rol in hun keuze. De marginale belastingdruk van meer uren werken is over het algemeen veel lager voor deeltijdwerknemers dan voltijders. Voor huishoudens die gebruikmaken van kinderopvang is de marginale druk wel hoger, en de kabinetsplannen gaan die verlagen. Werkenden reageren echter slechts beperkt op financiële prikkels – zoals belastingen – in het aantal gewerkte uren per week.Hervorming Sociale Regelgevin

    Zero-field incommensurate spin-Peierls phase with interchain frustration in TiOCl

    Full text link
    We report on the magnetic, thermodynamic and optical properties of the quasi-one-dimensional quantum antiferromagnets TiOCl and TiOBr, which have been discussed as spin-Peierls compounds. The observed deviations from canonical spin-Peierls behavior, e.g. the existence of two distinct phase transitions, have been attributed previously to strong orbital fluctuations. This can be ruled out by our optical data of the orbital excitations. We show that the frustration of the interchain interactions in the bilayer structure gives rise to incommensurate order with a subsequent lock-in transition to a commensurate dimerized state. In this way, a single driving force, the spin-Peierls mechanism, induces two separate transitions.Comment: 4 pages, 4 figure
    • …
    corecore