12,441 research outputs found

    Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses

    Full text link
    We propose that imitation between traders and their herding behaviour not only lead to speculative bubbles with accelerating over-valuations of financial markets possibly followed by crashes, but also to ``anti-bubbles'' with decelerating market devaluations following all-time highs. For this, we propose a simple market dynamics model in which the demand decreases slowly with barriers that progressively quench in, leading to a power law decay of the market price decorated by decelerating log-periodic oscillations. We document this behaviour on the Japanese Nikkei stock index from 1990 to present and on the Gold future prices after 1980, both after their all-time highs. We perform simultaneously a parametric and non-parametric analysis that are fully consistent with each other. We extend the parametric approach to the next order of perturbation, comparing the log-periodic fits with one, two and three log-frequencies, the latter one providing a prediction for the general trend in the coming years. The non-parametric power spectrum analysis shows the existence of log-periodicity with high statistical significance, with a prefered scale ratio of λ3.5\lambda \approx 3.5 for the Nikkei index λ1.9\lambda \approx 1.9 for the Gold future prices, comparable to the values obtained for speculative bubbles leading to crashes.Comment: 14 pages with 4 figure

    An Update on NASA's Lunar Dust Mitigation Strategy

    Get PDF
    It is well known that the Apollo lu-nar surface missions experienced a number of issues related to dust which are sometimes referred to as The Dust Problem. The jagged, electrostatically charged lunar dust particles can foul mechanisms and alter thermal properties. They tend to abrade textiles and scratch surfaces. NASA and other interested par-ties require an integrated, end-to-end dust mitigation strategy to enable sustainable lunar architectures

    On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures

    Get PDF
    The use of multiple-model techniques has been reported in a variety of control and signal processing applications. However, several theoretical analyses have recently appeared which outline fundamental limitations of these techniques in certain domains of application. In particular, the identifiability and interpretability of local linear model parameters in transient operating regimes is shown to be limited. Some modifications to the basic paradigm are suggested which overcome a number of problems. As an alternative to parametric identification of blended multiple model structures, nonparametric Gaussian process priors are suggested as a means of providing local models, and the results compared to a multiple-model approach in a Monte Carlo simulation on some simulated vehicle dynamics data

    On the interpretation and identification of dynamic Takagi-Sugenofuzzy models

    Get PDF
    Dynamic Takagi-Sugeno fuzzy models are not always easy to interpret, in particular when they are identified from experimental data. It is shown that there exists a close relationship between dynamic Takagi-Sugeno fuzzy models and dynamic linearization when using affine local model structures, which suggests that a solution to the multiobjective identification problem exists. However, it is also shown that the affine local model structure is a highly sensitive parametrization when applied in transient operating regimes. Due to the multiobjective nature of the identification problem studied here, special considerations must be made during model structure selection, experiment design, and identification in order to meet both objectives. Some guidelines for experiment design are suggested and some robust nonlinear identification algorithms are studied. These include constrained and regularized identification and locally weighted identification. Their usefulness in the present context is illustrated by examples

    The log-periodic-AR(1)-GARCH(1,1) model for financial crashes

    Full text link
    This paper intends to meet recent claims for the attainment of more rigorous statistical methodology within the econophysics literature. To this end, we consider an econometric approach to investigate the outcomes of the log-periodic model of price movements, which has been largely used to forecast financial crashes. In order to accomplish reliable statistical inference for unknown parameters, we incorporate an autoregressive dynamic and a conditional heteroskedasticity structure in the error term of the original model, yielding the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended models are fitted to financial indices of U. S. market, namely S&P500 and NASDAQ. Our analysis reveal two main points: (i) the log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical properties and (ii) the estimation of the parameter concerning the time of the financial crash has been improved.Comment: 17 pages, 4 figures, 12 tables, to appear in Europen Physical Journal

    The Higgs Penguin and its Applications : An overview

    Full text link
    We review the effective Lagrangian of the Higgs penguin in the Standard Model and its minimal supersymmetric extension (MSSM). As a master application of the Higgs penguin, we discuss in some detail the B-meson decays into a lepton-antilepton pair. Furthermore, we explain how this can probe the Higgs sector of the MSSM provided that some of these decays are seen at Tevatron Run II and B-factories. Finally, we present a complete list of observables where the Higgs penguin could be strongly involved.Comment: 22 pages, 6 figures, Invited review article to appear in Mod. Phys. Lett. A, v2: Table 1 updated, comments and references adde

    Nonparametric identification of linearizations and uncertainty using Gaussian process models – application to robust wheel slip control

    Get PDF
    Gaussian process prior models offer a nonparametric approach to modelling unknown nonlinear systems from experimental data. These are flexible models which automatically adapt their model complexity to the available data, and which give not only mean predictions but also the variance of these predictions. A further advantage is the analytical derivation of derivatives of the model with respect to inputs, with their variance, providing a direct estimate of the locally linearized model with its corresponding parameter variance. We show how this can be used to tune a controller based on the linearized models, taking into account their uncertainty. The approach is applied to a simulated wheel slip control task illustrating controller development based on a nonparametric model of the unknown friction nonlinearity. Local stability and robustness of the controllers are tuned based on the uncertainty of the nonlinear models’ derivatives

    Y’all Means All: The Southern Queer Experience and Grassroots Archives as Places of Remembrance

    Get PDF
    While the burgeoning field of queer history grows in academic prominence and scholarship, southern queer identities and histories are left in the gaps of this trailblazing research. As a segment of a larger senior honors thesis on gay press in Kentucky and the broader American South, this brief research report will specifically examine queer rurality, visibility, and space in the archive. This report also aims to highlight the political and sociological importance of remembering, studying, and teaching queer heritage, especially in the rural American South. This report argues that the complexities of southern queer histories are especially felt in the Women-In-Print Movement and in the methodologies of early queer historians in the mid-twentieth century, and that these waves of intellectual change should be included in narratives of national queer history. While many assume gay identities and southern identities to be mutually exclusive, the histories and peoples weaved throughout this research report prove that there is a vibrant culture that is both proudly southern and proudly queer in Kentucky and the American South

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge
    corecore