26,291 research outputs found
Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix
An iterative algorithm is presented for soft-input-soft-output (SISO)
decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the
sum product algorithm (SPA) in conjunction with a binary parity check matrix of
the RS code. The novelty is in reducing a submatrix of the binary parity check
matrix that corresponds to less reliable bits to a sparse nature before the SPA
is applied at each iteration. The proposed algorithm can be geometrically
interpreted as a two-stage gradient descent with an adaptive potential
function. This adaptive procedure is crucial to the convergence behavior of the
gradient descent algorithm and, therefore, significantly improves the
performance. Simulation results show that the proposed decoding algorithm and
its variations provide significant gain over hard decision decoding (HDD) and
compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on
Information Theor
Trop-2 inhibits prostate cancer cell adhesion to fibronectin through the β1 integrin-RACK1 axis.
Trop-2 is a transmembrane glycoprotein upregulated in several human carcinomas, including prostate cancer (PrCa). Trop-2 has been suggested to regulate cell-cell adhesion, given its high homology with the other member of the Trop family, Trop-1/EpCAM, and its ability to bind the tight junction proteins claudin-1 and claudin-7. However, a role for Trop-2 in cell adhesion to the extracellular matrix has never been postulated. Here, we show for the first time that Trop-2 expression in PrCa cells correlates with their aggressiveness. Using either shRNA-mediated silencing of Trop-2 in cells that endogenously express it, or ectopic expression of Trop-2 in cells that do not express it, we show that Trop-2 inhibits PrCa cell adhesion to fibronectin (FN). In contrast, expression of another transmembrane receptor, α(v) β(5) integrin, does not affect cell adhesion to this ligand. We find that Trop-2 does not modulate either protein or activation levels of the prominent FN receptors, β(1) integrins, but acts through increasing β(1) association with the adaptor molecule RACK1 and redistribution of RACK1 to the cell membrane. As a result of Trop-2 expression, we also observe activation of Src and FAK, known to occur upon β(1) -RACK1 interaction. These enhanced Src and FAK activities are not mediated by changes in either the activity of IGF-IR, which is known to bind RACK1, or IGF-IR\u27s ability to associate with β(1) integrins. In summary, our data demonstrate that the transmembrane receptor Trop-2 is a regulator of PrCa cell adhesion to FN through activation of the β(1) integrin-RACK1-FAK-Src signaling axis
- …