80,482 research outputs found

    A Response: In Defense of Truth in the Science of the Billings Ovulation Method

    Get PDF

    Independence, Relative Randomness, and PA Degrees

    Full text link
    We study pairs of reals that are mutually Martin-L\"{o}f random with respect to a common, not necessarily computable probability measure. We show that a generalized version of van Lambalgen's Theorem holds for non-computable probability measures, too. We study, for a given real AA, the \emph{independence spectrum} of AA, the set of all BB so that there exists a probability measure μ\mu so that μ{A,B}=0\mu\{A,B\} = 0 and (A,B)(A,B) is μ×μ\mu\times\mu-random. We prove that if AA is r.e., then no Δ20\Delta^0_2 set is in the independence spectrum of AA. We obtain applications of this fact to PA degrees. In particular, we show that if AA is r.e.\ and PP is of PA degree so that P̸TAP \not\geq_{T} A, then APT0A \oplus P \geq_{T} 0'

    Regional Income Stratification in Unified Germany Using a Gini Decomposition Approach

    Get PDF
    This paper delivers new insights into the development of income inequality and regional stratification in Germany after unification using a new method for detecting social stratification by a decomposition of the GINI index which yields the obligatory between- and withingroup components as well as an "overlapping" index for the different sup-populations. We apply this method together with a jackknife estimation of standard errors. We find that East Germany is still a stratum on its own when using post-government income, but since 2001 no longer is when using pre-government income. These results remain stable when using alternatively defined regional classifications. However, there are also indications of some regional variation within West Germany. Overall, these findings are important for the political discussion with respect to a potential regional concentration of future transfers from East to West Germany.Inequality decomposition; Gini; Stratification; German unification; Regional disparities; SOEP

    The deconfinement phase transition in the Hamiltonian approach to Yang--Mills theory in Coulomb gauge

    Full text link
    The deconfinement phase transition of SU(2) Yang--Mills theory is investigated in the Hamiltonian approach in Coulomb gauge assuming a quasi-particle picture for the grand canonical gluon ensemble. The thermal equilibrium state is found by minimizing the free energy with respect to the quasi-gluon energy. Above the deconfinement phase transition the ghost form factor remains infrared divergent but its infrared exponent is approximately halved, while the gluon energy, being infrared divergent in the confined phase, becomes infrared finite in the deconfined phase. For the effective gluon mass we find a critical exponent of 0.37. Using the lattice results for the gluon propagator to fix the scale, the deconfinement transition temperature is obtained in the range of 275 to 290 MeV.Comment: 20 pages, 13 figures, accepted for publication by Phys. Rev.

    Bimodules over Cartan MASAs in von Neumann Algebras, Norming Algebras, and Mercer's Theorem

    Get PDF
    In a 1991 paper, R. Mercer asserted that a Cartan bimodule isomorphism between Cartan bimodule algebras A_1 and A_2 extends uniquely to a normal *-isomorphism of the von Neumann algebras generated by A_1 and A_2 [13, Corollary 4.3]. Mercer's argument relied upon the Spectral Theorem for Bimodules of Muhly, Saito and Solel [15, Theorem 2.5]. Unfortunately, the arguments in the literature supporting [15, Theorem 2.5] contain gaps, and hence Mercer's proof is incomplete. In this paper, we use the outline in [16, Remark 2.17] to give a proof of Mercer's Theorem under the additional hypothesis that the given Cartan bimodule isomorphism is weak-* continuous. Unlike the arguments contained in [13, 15], we avoid the use of the Feldman-Moore machinery from [8]; as a consequence, our proof does not require the von Neumann algebras generated by the algebras A_i to have separable preduals. This point of view also yields some insights on the von Neumann subalgebras of a Cartan pair (M,D), for instance, a strengthening of a result of Aoi [1]. We also examine the relationship between various topologies on a von Neumann algebra M with a Cartan MASA D. This provides the necessary tools to parametrize the family of Bures-closed bimodules over a Cartan MASA in terms of projections in a certain abelian von Neumann algebra; this result may be viewed as a weaker form of the Spectral Theorem for Bimodules, and is a key ingredient in the proof of our version of Mercer's theorem. Our results lead to a notion of spectral synthesis for weak-* closed bimodules appropriate to our context, and we show that any von Neumann subalgebra of M which contains D is synthetic. We observe that a result of Sinclair and Smith shows that any Cartan MASA in a von Neumann algebra is norming in the sense of Pop, Sinclair and Smith.Comment: 21 pages, paper is a completely reworked and expanded version of an earlier preprint with a similar titl

    Dynamics of the Kuramoto-Sakaguchi Oscillator Network with Asymmetric Order Parameter

    Full text link
    We study the dynamics of a generalized version of the famous Kuramoto-Sakaguchi coupled oscillator model. In the classic version of this system, all oscillators are governed by the same ODE, which depends on the order parameter of the oscillator configuration. The order parameter is the arithmetic mean of the configuration of complex oscillator phases, multiplied by some constant complex coupling factor. In the generalized model we consider, the order parameter is allowed to be any complex linear combination of the complex oscillator phases, so the oscillators are no longer necessarily weighted identically in the order parameter. This asymmetric version of the K-S model exhibits a much richer variety of steady-state dynamical behavior than the classic symmetric version; in addition to stable synchronized states, the system may possess multiple stable (N-1,1) states, in which all but one of the oscillators are in sync, as well as multiple families of neutrally stable asynchronous states or closed orbits, in which no two oscillators are in sync. We present an exhaustive description of the possible steady state dynamical behaviors; our classification depends on the complex coefficients that determine the order parameter. We use techniques from group theory and hyperbolic geometry to reduce the dynamic analysis to a 2D flow on the unit disc, which has geometric significance relative to the hyperbolic metric. The geometric-analytic techniques we develop can in turn be applied to study even more general versions of Kuramoto oscillator networks
    corecore