16 research outputs found

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    A Miniature Optical Neuronavigation System for CT-Guided Stereotaxy

    No full text
    Background and Objective: Neuronavigation devices have progressed over the past 2 decades, but logistical limitations remain for many stereotactic procedures. We describe our technique and accuracy for a novel miniature optical tracking system which overcomes these limitations. Method: The minioptical tracking system uses a miniature video camera mounted on a rigid cannula to determine cannula location and orientation relative to a patient-attached sticker containing reference markers. A CT scan is used to register these markers to the anatomy and a user-selected target. A computer displays the cannula guidance information to the target. Bench testing was performed on 225 targets in a custom test phantom and additional testing was performed on 20 small targets in an anthropomorphic head phantom to determine the practical accuracy and workflow. Results: The phantom study demonstrated that 3-D navigation accuracy is 1.41 ± 0.53 mm. There was a 100% head phantom study success rate for the 20 small targets. Conclusions: The resulting accuracy data demonstrated good correlation with the CT data, and the clinical simulation workflow indicated its potential usefulness for common neurosurgical applications. Furthermore, this small-footprint tracking technology does not experience the traditional environmentally induced issues or the requirement of pin-based head fixation, allowing for use in the neurointensive care unit and the emergency department. © 2013 S. Karger AG, Basel
    corecore