34,996 research outputs found

    NASA research activities in aeropropulsion

    Get PDF
    NASA is responsible for advancing technologies related to air transportation. A sampling of the work at NASA's Lewis Research Center aimed at improved aircraft propulsion systems is described. Particularly stressed are efforts related to reduced noise and fuel consumption of subsonic transports. Generic work in specific disciplines are reviewed including computational analysis, materials, structures, controls, diagnostics, alternative fuels, and high-speed propellers. Prospects for variable cycle engines are also discussed

    Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Get PDF
    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes

    Jet transport performance in thunderstorm wind shear conditions

    Get PDF
    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results

    The 16-39 micron spectroscopy of oxygen-rich stars

    Get PDF
    Airborne observations of the 16-39 microns spectra of ten oxygen-rich stars with excess emission in the infrared was obtained. The stars show excess emission attributed to circumstellar dust grains in the 16-39 microns region in the form of a broad hump peaking near 18 microns and falling smoothly to longer wavelengths. The emission is similar in character to the emission from the Trapezium region of the Orion nebula indicating the grain materials are quite similar in these objects. The existence of a feature in the 20 microns region is consistent with the 0-Si-0 bending resonance expected for silicate material. The lack of any sharp structure in the spectra indicates the silicate is in an amorphous, disordered form. A simple model of small grains of carbonaceous chondrite silicate material in a diffuse circumstellar envelope is shown to give a good qualitative fit to the observed 8-39 microns circumstellar spectra. Comparison of the observed spectra with the model spectra indicates the grain emissivity falls as 1/lambda squared from 20 microns to 40 microns

    Bioprocesses

    Get PDF
    The application of remote sensing techniques to the study of eutrophication in natural waters and the location and characterization of fronts is considered. The specific problem to be studied is examined along with the feasibility and capabability of remote sensing techniques for each application

    Investigating Heating and Cooling in the BCS & B55 Cluster Samples

    Full text link
    We study clusters in the BCS cluster sample which are observed by Chandra and are more distant than redshift, z>0.1. We select from this subsample the clusters which have both a short central cooling time and a central temperature drop, and also those with a central radio source. Six of the clusters have clear bubbles near the centre. We calculate the heating by these bubbles and express it as the ratio r_heat/r_cool=1.34+/-0.20. This result is used to calculate the average size of bubbles expected in all clusters with central radio sources. In three cases the predicted bubble sizes approximately match the observed radio lobe dimensions. We combine this cluster sample with the B55 sample studied in earlier work to increase the total sample size and redshift range. This extended sample contains 71 clusters in the redshift range 0<z<0.4. The average distance out to which the bubbles offset the X-ray cooling in the combined sample is at least r_heat/r_cool=0.92+/-0.11. The distribution of central cooling times for the combined sample shows no clusters with clear bubbles and t_cool>1.2Gyr. An investigation of the evolution of cluster parameters within the redshift range of the combined samples does not show any clear variation with redshift.Comment: 12 pages, 9 figures, accepted for publication in MNRA
    corecore