6,877 research outputs found
High-Q Nanomechanics via Destructive Interference of Elastic Waves
Mechanical dissipation poses an ubiquitous challenge to the performance of
nanomechanical devices. Here we analyze the support-induced dissipation of
high-stress nanomechanical resonators. We develop a model for this loss
mechanism and test it on silicon nitride membranes with circular and square
geometries. The measured Q-values of different harmonics present a
non-monotonic behavior which is successfully explained. For azimuthal harmonics
of the circular geometry we predict that destructive interference of the
radiated waves leads to an exponential suppression of the clamping loss in the
harmonic index. Our model can also be applied to graphene drums under high
tension.Comment: 8 pages, 1 figur
Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine
BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis
Dipole-induced vortex ratchets in superconducting films with arrays of micromagnets
We investigate the transport properties of superconducting films with
periodic arrays of in-plane magnetized micromagnets. Two different magnetic
textures are studied: a square array of magnetic bars and a close-packed array
of triangular microrings. As confirmed by MFM imaging, the magnetic state of
both systems can be adjusted to produce arrays of almost point-like magnetic
dipoles. By carrying out transport measurements with ac drive, we observed
experimentally a recently predicted ratchet effect induced by the interaction
between superconducting vortices and the magnetic dipoles. Moreover, we find
that these magnetic textures produce vortex-antivortex patterns, which have a
crucial role on the transport properties of this hybrid system.Comment: 4 pages, 4 figure
Domain wall displacement in Py square ring for single nanometric magnetic bead detection
A new approach based on the domain wall displacement in confined
ferromagnetic nanostructures for attracting and sensing a single nanometric
magnetic particles is presented. We modeled and experimentally demonstrated the
viability of the approach using an anisotropic magnetoresistance device made by
a micron-size square ring of Permalloy designed for application in magnetic
storage. This detection concept can be suitable to biomolecular recognition,
and in particular to single molecule detection.Comment: 8pages, 3figure
Graphene-based photovoltaic cells for near-field thermal energy conversion
Thermophotovoltaic devices are energy-conversion systems generating an
electric current from the thermal photons radiated by a hot body. In far field,
the efficiency of these systems is limited by the thermodynamic
Schockley-Queisser limit corresponding to the case where the source is a black
body. On the other hand, in near field, the heat flux which can be transferred
to a photovoltaic cell can be several orders of magnitude larger because of the
contribution of evanescent photons. This is particularly true when the source
supports surface polaritons. Unfortunately, in the infrared where these systems
operate, the mismatch between the surface-mode frequency and the semiconductor
gap reduces drastically the potential of this technology. Here we show that
graphene-based hybrid photovoltaic cells can significantly enhance the
generated power paving the way to a promising technology for an intensive
production of electricity from waste heat.Comment: 5 pages, 4 figure
Spectral optical monitoring of the double peaked emission line AGN Arp 102B: II. Variability of the broad line properties
We investigate a long-term (26 years, from 1987 to 2013) variability in the
broad spectral line properties of the radio galaxy Arp 102B, an active galaxy
with broad double-peaked emission lines. We use observations presented in Paper
I (Shapovalova et al. 2013) in the period from 1987 to 2011, and a new set of
observations performed in 2012--2013. To explore the BLR geometry, and clarify
some contradictions about the nature of the BLR in Arp 102B we explore
variations in the H and H line parameters during the monitored
period. We fit the broad lines with three broad Gaussian functions finding the
positions and intensities of the blue and red peaks in H and H.
Additionally we fit averaged line profiles with the disc model. We find that
the broad line profiles are double-peaked and have not been changed
significantly in shapes, beside an additional small peak that, from time to
time can be seen in the blue part of the H line. The positions of the
blue and red peaks { have not changed significantly during the monitored
period. The H line is broader than H line in the monitored
period. The disc model is able to reproduce the H and H broad
line profiles, however, observed variability in the line parameters are not in
a good agreement with the emission disc hypothesis. It seems that the BLR of
Arp 102B has a disc-like geometry, but the role of an outflow can also play an
important role in observed variation of the broad line properties.Comment: 17 pages, Accepted for publication in A&
- …
