3,271 research outputs found

    The longitudinal resistance of a quantum Hall system with a density gradient

    Full text link
    Following recent experiments, we consider current flow in two dimensional electronic systems in the quantum Hall regime where a gradient in the electron density induces a spatial variation in the Hall resistivity. Describing the system in terms of a spatially varying local resistivity tensor, we show that in such a system the current density is generically non-uniform, with the current being pushed towards one side of the sample. We show that, for sufficiently large density gradient, the voltage along that side is determined by the change of the Hall resistivity, and is independent of the microscopic longitudinal resistivity, while the voltage on the opposite side is small and determined by both longitudinal and Hall resistivities. We solve some particular models in detail, and propose ways by which the microscopic longitudinal resistivity may be extracted from measurements of the longitudinal voltage on both sides of the sample.Comment: 9 pages, 3 figure

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Theory of Magnetodynamics Induced by Spin Torque in Perpendicularly Magnetized Thin Films

    Full text link
    A nonlinear model of spin wave excitation using a point contact in a thin ferromagnetic film is introduced. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the fully nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization under the point contact. The theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.Comment: 5 pages, 4 figures, submitted to PR

    Predicted signatures of p-wave superfluid phases and Majorana zero modes of fermionic atoms in RF absorption

    Full text link
    We study the superfluid phases of quasi-2D atomic Fermi gases interacting via a p-wave Feshbach resonance. We calculate the absorption spectra of these phases under a hyperfine transition, for both non-rotating and rotating superfluids. We show that one can identify the different phases of the p-wave superfluid from the absorption spectrum. The absorption spectrum shows clear signatures of the existence of Majorana zero modes at the cores of vortices of the weakly-pairing px+ipyp_x+ip_y phase

    Reconstruction of Network Evolutionary History from Extant Network Topology and Duplication History

    Full text link
    Genome-wide protein-protein interaction (PPI) data are readily available thanks to recent breakthroughs in biotechnology. However, PPI networks of extant organisms are only snapshots of the network evolution. How to infer the whole evolution history becomes a challenging problem in computational biology. In this paper, we present a likelihood-based approach to inferring network evolution history from the topology of PPI networks and the duplication relationship among the paralogs. Simulations show that our approach outperforms the existing ones in terms of the accuracy of reconstruction. Moreover, the growth parameters of several real PPI networks estimated by our method are more consistent with the ones predicted in literature.Comment: 15 pages, 5 figures, submitted to ISBRA 201

    Super-resolution of faces using texture mapping on a generic 3D model

    Get PDF
    This paper proposes a novel face texture mapping framework to transform faces with different poses into a unique texture map. Under this framework, texture mapping can be realized by utilizing a generic 3D face model, standard Haar-like feature based detector, active appearance model and pose estimation algorithm. By this texture map, correspondence of every pixel at the face across multiple distinct input images can then be established, which enables super-resolution algorithms to be applied directly on registered texture map to render high resolution faces. This paper details the proposed framework, and illustrates how the proposed super-resolution algorithm works with the help of weighted average and median filters. Convincing experimental results are also presented to validate the effectiveness of the proposed framework and superresolution algorithm. © 2009 IEEE.published_or_final_versio

    Family resilience where families have a child (0-8 years) with disability: final report

    Get PDF
    Using the findings from the primary data collection with families and stakeholders, this report develops the understanding of resilience in these families. It also analyses service practices and models and looks at how services can assist families to build and maintain resilience. Using the findings from the primary data collection with families and stakeholders, this report develops the understanding of resilience in these families. It also analyses service practices and models in order to identify and define elements of practice that build family resilience, detract from family resilience, and are crucial to the maintenance of resilience during times of transition. The report concludes with a section on how services can assist families to build and maintain resilience

    Miniature Trailing Edge Effector for Aerodynamic Control

    Get PDF
    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states
    corecore