11,712 research outputs found

    Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Get PDF
    This paper reports experiments investigating the reaction of H2_{2} with uranium metal-oxide bilayers. The bilayers consist of \leq 100 nm of epitaxial α\alpha-U (grown on a Nb buffer deposited on sapphire) with a UO2_{2} overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2_{2} caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2_{2} overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2_{2}-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3_{3}. This explains why no diffraction peaks from UH3_{3} are observed. {\textcopyright British Crown Owned Copyright 2017/AWE}Comment: Submitted for peer revie

    Valuing energy performance in home purchasing: an analysis of mortgage lending for sustainable buildings

    Get PDF
    Many UK lenders consider energy costs, but only as it relates to information about the customers and not the energy performance of the building. Lenders could include more detailed energy costs estimates that reflect energy performance alongside other ma jor household expenses when assessing customer affordability. At present, energy performance ratings required for all homes sold in the UK are of dubious quality and generally do not accurately reflect the likely energy costs. However, if lenders were to inc lude energy performance in their mortgage calculations this might ha ve the effect of improving the accuracy of energy performance ratings through market pressure. It may also have the consequence of increasing the value of more efficient homes, which would have lower energy costs and improve its affordability for customer s. It may also offer an opportunity for lenders to extend mortgages to improve the dwellings energy performance due to the potential increase in value. In this work, we set out the implications of mortgage lenders using the dwelling’s energy perfo rmance as part of their energy cost calculations. We also illustrate how improving the accuracy of ratings can achieve more precise estimates of energy costs. The implication of includ ing energy performance ratings when providing mortgages could result in £billions for lenders in terms of loan extensions and more accurately property values. It could also help potential purchasers understand the real costs of the properties they purchase

    A physical distinction between a covariant and non covariant reduction process in relativistic quantum theories

    Full text link
    Causality imposes strong restrictions on the type of operators that may be observables in relativistic quantum theories. In fact, causal violations arise when computing conditional probabilities for certain partial causally connected measurements using the standard non covariant procedure. Here we introduce another way of computing conditional probabilities, based on an intrinsic covariant relational order of the events, which differs from the standard one when these type of measurements are included. This alternative procedure is compatible with a wider and very natural class of operators without breaking causality. If some of these measurements could be implemented in practice as predicted by our formalism, the non covariant, conventional approach should be abandoned. Furthermore, the description we promote here would imply a new physical effect where interference terms are suppressed as a consequence of the covariant order in the measurement process.Comment: 7 pages, latex file, 1 ps figure. Major presentation changes. To appear in New Journal of Physic

    Information theoretic treatment of tripartite systems and quantum channels

    Full text link
    A Holevo measure is used to discuss how much information about a given POVM on system aa is present in another system bb, and how this influences the presence or absence of information about a different POVM on aa in a third system cc. The main goal is to extend information theorems for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize "all-or-nothing" theorems about information located in tripartite systems to the case of \emph{partial information}, in the form of quantitative inequalities. Some of the inequalities can be viewed as entropic uncertainty relations that apply in the presence of quantum side information, as in recent work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels: e.g., if \EC accurately transmits certain POVMs, the complementary channel \FC will necessarily be noisy for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems, restricting to pure states leads to the basis-invariance of the difference between the information about aa contained in bb and cc.Comment: 21 pages. An earlier version of this paper attempted to prove our main uncertainty relation, Theorem 5, using the achievability of the Holevo quantity in a coding task, an approach that ultimately failed because it did not account for locking of classical correlations, e.g. see [DiVincenzo et al. PRL. 92, 067902 (2004)]. In the latest version, we use a very different approach to prove Theorem

    Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography

    Full text link
    In practical quantum cryptography, the source sometimes produces multi-photon pulses, thus enabling the eavesdropper Eve to perform the powerful photon-number-splitting (PNS) attack. Recently, it was shown by Curty and Lutkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always the optimal attack when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve gains a larger amount of information using another attack based on a 2->3 cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent 2->3 cloning attack which performs better than those described before. Using it, we confirm that, in the presence of errors, Eve's better strategy uses 2->3 cloning attacks instead of the PNS. However, this improvement is very small for the implementations of the Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks is conceptually interesting but basically does not change the value of the security parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.Comment: 11 pages, 5 figures; "intuitive" formula (31) adde

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics

    RXTE monitoring observations of Markarian 3

    Get PDF
    We present Rossi X-ray Timing Explorer, monitoring observations of the Seyfert 2 galaxy Markarian 3 spanning a 200 day period during which time the source flux varied by a factor 2\sim 2 in the 4-20 keV bandpass. In broad agreement with earlier Ginga results, the average spectrum can be represented in terms of a simple spectral model consisting of a very hard power-law continuum (Γ1.1\Gamma \approx 1.1) modified below 6\sim 6 keV by a high absorbing column (NH6×1023N_H\sim 6\times 10^{23} \cunits) together with a high equivalent width Fe-K emission feature at 6.4 keV. The abnormally flat spectral index is probably the signature of a strong reflection component and we consider two models incorporating such emission. In the first the reflected signal suffers the same absorption as the intrinsic continuum, whereas in the second the reflection is treated as an unabsorbed spectral component. In the former case, we require a very strong reflection signal (R <3R ~< 3) in order to match the data; in addition variability of both the intrinsic power-law and the reflection component is required. The unabsorbed reflection model requires a somewhat higher line-of-sight column density to the nuclear source (1024\sim 10^{24} \cunits), but in this case the reflected signal remains constant whilst the level of the intrinsic continuum varies. The latter description is consistent with the reflection originating from the illuminated far inner wall of a molecular torus, the nearside of which screens our direct view of the central continuum source.Comment: 7 pages, submitted to the MNRA

    On the dimension of subspaces with bounded Schmidt rank

    Full text link
    We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden et al., which show that in large d x d--dimensional systems there exist random subspaces of dimension almost d^2, all of whose states have entropy of entanglement at least log d - O(1). It is also related to results due to Parthasarathy on the dimension of completely entangled subspaces, which have connections with the construction of unextendible product bases. Here we take as entanglement measure the Schmidt rank, and determine, for every pair of local dimensions dA and dB, and every r, the largest dimension of a subspace consisting only of entangled states of Schmidt rank r or larger. This exact answer is a significant improvement on the best bounds that can be obtained using random subspace techniques. We also determine the converse: the largest dimension of a subspace with an upper bound on the Schmidt rank. Finally, we discuss the question of subspaces containing only states with Schmidt equal to r.Comment: 4 pages, REVTeX4 forma
    corecore