25,092 research outputs found
Clustered Graph Coloring and Layered Treewidth
A graph coloring has bounded clustering if each monochromatic component has
bounded size. This paper studies clustered coloring, where the number of colors
depends on an excluded complete bipartite subgraph. This is a much weaker
assumption than previous works, where typically the number of colors depends on
an excluded minor. This paper focuses on graph classes with bounded layered
treewidth, which include planar graphs, graphs of bounded Euler genus, graphs
embeddable on a fixed surface with a bounded number of crossings per edge,
amongst other examples. Our main theorem says that for fixed integers ,
every graph with layered treewidth at most and with no subgraph
is -colorable with bounded clustering. In the case, which
corresponds to graphs of bounded maximum degree, we obtain polynomial bounds on
the clustering. This greatly improves a corresponding result of Esperet and
Joret for graphs of bounded genus. The case implies that every graph with
a drawing on a fixed surface with a bounded number of crossings per edge is
5-colorable with bounded clustering. Our main theorem is also a critical
component in two companion papers that study clustered coloring of graphs with
no -subgraph and excluding a fixed minor, odd minor or topological
minor
Severe storm initiation and development from satellite infrared imagery and Rawinsonde data
The geographical distribution of potential temperatures, mixing ratio, and streamlines of flow patterns at 850, 700, and 500 mb heights are used to understand the prestorm convection and the horizontal convergence of moisture. From the analysis of 21 tornadoes the following conclusions are reached: (1) Strong horizontal convergence of moisture appeared at the 850, 700, and 500 mb levels in the area 12 hours before the storm formation; (2) An abundantly moist atmosphere below 3 km (700 mb) becomes convectively unstable during the time period between 12 and 24 hours before the initiation of the severe storms; (3) Strong winds veering with height with direction parallel to the movement of a dryline, surface fronts, etc; (4) During a 36-hour period, a tropopause height in the areas of interest is lowest at the time of tornadic cloud formation; (5) A train of gravity waves is detected before and during the cloud formation period. Rapid-scan infrared imagery provides near real-time information on the life cycle of the storm which can be summarized as follows: (1) Enhanced convection produced an overshooting cloud top penetrating above the tropopause, making the mass density of the overshooting cloud much greater than the mass density of the surrounding air; (2) The overshooting cloud top collapsed at the end of the mature stage of the cloud development; (3) The tornado touchdown followed the collapse of the overshooting cloud top
A theoretical model of the wave particle interaction of plasma in space
A theoretical model, based on the kinetic theory for the perturbation of plasma in the magnetosphere, is proposed to study the observed disturbances which are caused by both natural and artificial sources that generate wave-like perturbations propagating around the globe. The proposed model covers the wave propagation through a media of transitional (from collisional to collisionless) fully ionized magnetoactive plasma. A systematic formulation of the problem is presented and the method of solution for the transitional model of magnetosphere is discussed. The possible emission of hydromagnetic waves in the magnetosphere during the quiet and disturbed time are also discussed
Colored bosons on top FBA and angular cross section for production
With full data set that corresponds to an integrated luminosity of 9.4
fb, CDF has updated the top quark forward-backward asymmetry (FBA) as
functions of rapidity difference and invariant mass
. Beside the sustained inconsistency between experiments and
standard model (SM) predictions at large and , an
unexpected large first Legendre moment with is found. In
order to solve the large top FBA, we study the contributions of color triplet
scalar and color octet vector boson. We find that the top FBA at and GeV in triplet and octet model could be enhanced to
be around 30% and 20%, whereas the first Legendre moment is and , respectively.Comment: 13 pages, 5 figures; references adde
- …
