118 research outputs found

    Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(pentafluorophenyl acrylate)

    Get PDF
    Polysulfobetaines, polymers carrying highly polar zwitterionic side chains, present a promising research field by virtue of their antifouling properties, hemocompatibility, and stimulus-responsive behavior. However, limited synthetic approaches exist to produce sulfobetaine copolymers comprising hydrophobic components. Postpolymerization modification of an activated ester precursor, poly(pentafluorophenyl acrylate), employing a zwitterionic amine, 3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate, ADPS, is presented as a novel, one-step synthetic concept toward sulfobetaine (co)polymers. Modifications were performed in homogeneous solution using propylene carbonate as solvent with mixtures of ADPS and pentylamine, benzylamine, and dodecylamine producing a series of well-defined statistical acrylamido sulfobetaine copolymers containing hydrophobic pentyl, benzyl, or dodecylacrylamide comonomers with well-controllable molar composition as evidenced by NMR and FT-IR spectroscopy and size exclusion chromatography.This synthetic strategy was exploited to investigate, for the first time, the influence of hydrophobic modification on the upper critical solution temperature (UCST) of sulfobetaine copolymers in aqueous solution. Surprisingly, incorporation of pentyl groups was found to increase solubility over a wide composition range, whereas benzyl groups decreased solubility—an effect attributed to different entropic and enthalpic contributions of both functional groups. While UCST transitions of polysulfobetaines are typically limited to higher molar mass samples, incorporation of 0–65 mol % of benzyl groups into copolymers with molar masses of 25.5–34.5 kg/mol enabled sharp, reversible transitions from 6 to 82 °C in solutions containing up to 76 mM NaCl, as observed by optical transmittance and dynamic light scattering. Both synthesis and systematic UCST increase of sulfobetaine copolymers presented here are expected to expand the scope and applicability of these smart materials

    Novi kopolimerni zwitterionski matriksi za polagano oslobađanje verapamil hidroklorida

    Get PDF
    Stable co-polymer [vinyl acetate-co-3-dimethyl(methacryloyloxyethyl)ammonium propane sulfоnate, p(VA-co-DMAPS)] latex of different compositions has been synthesized for the first time by emulsifier-free emulsion copolymerization. The unusual “overshooting” behavior of the co-polymer tablets has been explained by the formation of specific clusters from the opposite oriented dipoles zwitterionic species. The change of their concentration with the DMAPS unit fraction (mDMAPS), pH and ionic strength has been considered responsible for the differences observed in the swelling kinetics. The results obtained prove that mDMAPS and ionic strength could be used to control the swelling degree of the p(VA-co-DMAPS) matrices. In this way, p(VA-co-DMAPS) matrices could be effectively used to control the sustained release of drugs with basic properties like verapamil hydrochloride from model tablets.Metodom emulzijske polimerizacije sintetiziran je novi stabilni kopolimer [vinil acetat-ko-3-dimetil(metakriloiloksietill)amonijev propan sulfоnat, p(VA-co-DMAPS)] lateks promjenjivog sastava. Neobično “overshooting” ponašanje tableta pripravljenih iz tog kopolimera objašnjava se stvaranjem specifičnih klastera suprotno rijentiranih dipola zwitterionskih specija. Proučavan je utjecaj udjela DMAPS jedinica (mDMAPS), pH i ionske jakosti na kinetiku bubrenja. Dobiveni rezultati dokazuju da se promjenom mDMAPS i ionske jakosti može kontrolirati stupanj bubrenja p(VA-co-DMAPS) matriksa i oslobađanje verapamil hidroklorida iz tableta pa se ti matriksi mogu upotrijebiti za polagano oslobađanje bazičnih lijekova srodnih verapamilu

    Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome

    Get PDF
    BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.Andrea Anesi, Matteo Stocchero, Silvia Dal Santo, Mauro Commisso, Sara Zenoni, Stefania Ceoldo, Giovanni Battista Tornielli, Tracey E. Siebert, Markus Herderich, Mario Pezzotti and Flavia Guzz
    corecore