4,390 research outputs found

    Computational modeling of drug response with applications to neuroscience

    Get PDF
    The development of novel high-throughput technologies has opened up the opportunity to deeply characterize patient tissues at various molecular levels and has given rise to a paradigm shift in medicine towards personalized therapies. Computational analysis plays a pivotal role in integrating the various genome data and understanding the cellular response to a drug. Based on that data, molecular models can be constructed that incorporate the known downstream effects of drug-targeted receptor molecules and that predict optimal therapy decisions. In this article, we describe the different steps in the conceptual framework of computational modeling. We review resources that hold information on molecular pathways that build the basis for constructing the model interaction maps, highlight network analysis concepts that have been helpful in identifying predictive disease patterns, and introduce the basic concepts of kinetic modeling. Finally, we illustrate this framework with selected studies related to the modeling of important target pathways affected by drugs

    Convective–reactive nucleosynthesis of K, Sc, Cl and p-process isotopes in O–C shell mergers

    Get PDF
    © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We address the deficiency of odd-Z elements P, Cl, K and Sc in Galactic chemical evolution models through an investigation of the nucleosynthesis of interacting convective O and C shells in massive stars. 3D hydrodynamic simulations of O-shell convection with moderate C-ingestion rates show no dramatic deviation from spherical symmetry. We derive a spherically averaged diffusion coefficient for 1D nucleosynthesis simulations, which show that such convective-reactive ingestion events can be a production site for P, Cl, K and Sc. An entrainment rate of 10-3M⊙s-1features overproduction factors OPs≈ 7. Full O-C shell mergers in our 1D stellar evolution massive star models have overproduction factors OPm> 1 dex but for such cases 3D hydrodynamic simulations suggest deviations from spherical symmetry. Îł - process species can be produced with overproduction factors of OPm> 1 dex, for example, for130, 132Ba. Using the uncertain prediction of the 15M⊙, Z = 0.02 massive star model (OPm≈ 15) as representative for merger or entrainment convective-reactive events involving O- and C-burning shells, and assume that such events occur in more than 50 per cent of all stars, our chemical evolution models reproduce the observed Galactic trends of the odd-Z elements

    Convective-reactive proton-C12 combustion in Sakurai's object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars

    Full text link
    Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectively unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content [...] We focus on the convective-reactive episode in the very-late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund etal. (1999) determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out 3D hydrodynamic He-shell flash convection [...] we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone [...] we obtain significantly higher neutron densities (~few 10^15 1/cm^3) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr and Y by about 2 orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. [...] We determine how our results depend on uncertainties of nuclear reaction rates, for example for the C13(\alpha, n)O16 reaction.Comment: ApJ in press, this revision contains several changes that improve clarity of presentation reflecting the suggestions made by the referee; this version represents no change in substance compared to version 1; some technical material has been moved to an appendix; an additional appendix deals in more detail with the combustion time scales; this version is practically identical to the ApJ versio

    A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment

    Get PDF
    Predicting cancer survival from molecular data is an important aspect of biomedical research because it allows quantifying patient risks and thus individualizing therapy. We introduce XGBoost tree ensemble learning to predict survival from transcriptome data of 8,024 patients from 25 different cancer types and show highly competitive performance with state-of-the-art methods. To further improve plausibility of the machine learning approach we conducted two additional steps. In the first step, we applied pan-cancer training and showed that it substantially improves prognosis compared with cancer subtype-specific training. In the second step, we applied network propagation and inferred a pan-cancer survival network consisting of 103 genes. This network highlights cross-cohort features and is predictive for the tumor microenvironment and immune status of the patients. Our work demonstrates that pan-cancer learning combined with network propagation generalizes over multiple cancer types and identifies biologically plausible features that can serve as biomarkers for monitoring cancer survival

    NetCore: a network propagation approach using node coreness

    Get PDF
    We present NetCore, a novel network propagation approach based on node coreness, for phenotype–genotype associations and module identification. NetCore addresses the node degree bias in PPI networks by using node coreness in the random walk with restart procedure, and achieves improved re-ranking of genes after propagation. Furthermore, NetCore implements a semi-supervised approach to identify phenotype-associated network modules, which anchors the identification of novel candidate genes at known genes associated with the phenotype. We evaluated NetCore on gene sets from 11 different GWAS traits and showed improved performance compared to the standard degree-based network propagation using cross-validation. Furthermore, we applied NetCore to identify disease genes and modules for Schizophrenia GWAS data and pan-cancer mutation data. We compared the novel approach to existing network propagation approaches and showed the benefits of using NetCore in comparison to those. We provide an easy-to-use implementation, together with a high confidence PPI network extracted from ConsensusPathDB, which can be applied to various types of genomics data in order to obtain a re-ranking of genes and functionally relevant network modules

    ConsensusPathDB 2022: molecular interactions update as a resource for network biology

    Get PDF
    Molecular interactions are key drivers of biological function. Providing interaction resources to the research community is important since they allow functional interpretation and network-based analysis of molecular data. ConsensusPathDB (http://consensuspathdb.org) is a meta-database combining interactions of diverse types from 31 public resources for humans, 16 for mice and 14 for yeasts. Using ConsensusPathDB, researchers commonly evaluate lists of genes, proteins and metabolites against sets of molecular interactions defined by pathways, Gene Ontology and network neighborhoods and retrieve complex molecular neighborhoods formed by heterogeneous interaction types. Furthermore, the integrated protein–protein interaction network is used as a basis for propagation methods. Here, we present the 2022 update of ConsensusPathDB, highlighting content growth, additional functionality and improved database stability. For example, the number of human molecular interactions increased to 859 848 connecting 200 499 unique physical entities such as genes/proteins, metabolites and drugs. Furthermore, we integrated regulatory datasets in the form of transcription factor–, microRNA– and enhancer–gene target interactions, thus providing novel functionality in the context of overrepresentation and enrichment analyses. We specifically emphasize the use of the integrated protein–protein interaction network as a scaffold for network inferences, present topological characteristics of the network and discuss strengths and shortcomings of such approaches

    Expression profiling of drug response-from genes to pathways

    Get PDF
    Understanding individual response to a drug—what determines its efficacy and tolerability—is the major bottleneck in current drug development and clinical trials. Intracellular response and metabolism, for example through cytochrome P- 450 enzymes, may either enhance or decrease the effect of different drugs, dependent on the genetic variant. Microarrays offer the potential to screen the genetic composition of the individual patient. However, experiments are “noisy” and must be accompanied by solid and robust data analysis. Furthermore, recent research aims at the combination of highthroughput data with methods of mathematical modeling, enabling problem-oriented assistance in the drug discovery process. This article will discuss state-of-the-art DNA array technology platforms and the basic elements of data analysis and bioinformatics research in drug discovery. Enhancing single-gene analysis, we will present a new method for interpreting gene expression changes in the context of entire pathways. Furthermore, we will introduce the concept of systems biology as a new paradigm for drug development and highlight our recent research—the development of a modeling and simulation platform for biomedical applications. We discuss the potentials of systems biology for modeling the drug response of the individual patient
    • 

    corecore