2,594 research outputs found

    Interpretation of increased energetic particle flux measurements by SEPT aboard the STEREO spacecraft and contamination

    Full text link
    Context. Interplanetary (IP) shocks are known to be accelerators of energetic charged particles observed in-situ in the heliosphere. However, the acceleration of near-relativistic electrons by shocks in the interplanetary medium is often questioned. On 9 August 2011 a Corotating Interaction Region (CIR) passed STEREO B (STB) that resulted in a flux increase in the electron and ion channels of the Solar Electron and Proton Telescope (SEPT). Because electron measurements in the few keV to several 100 keV range rely on the so-called magnet foil technique, which is utilized by SEPT, ions can contribute to the electron channels. Aims. We aim to investigate whether the flux increase in the electron channels of SEPT during the CIR event on 9 August 2011 is caused by ion contamination only. Methods. We compute the SEPT response functions for protons and helium utilizing an updated GEANT4 model of SEPT. The CIR energetic particle ion spectra for protons and helium are assumed to follow a Band function in energy per nucleon with a constant helium to proton ratio. Results. Our analysis leads to a helium to proton ratio of 16.9% and a proton flux following a Band function with the parameters I0=1.24104I_0 = 1.24 \cdot 10^4 / (cm2 s sr MeV/nuc.), Ec=79E_c = 79 keV/nuc. and spectral indices of γ1=0.94\gamma_1 = -0.94 and γ2=3.80\gamma_2 = -3.80 which are in good agreement with measurements by the Suprathermal Ion Telescope (SIT) aboard STB. Conclusions. Since our results explain the SEPT measurements, we conclude that no significant amount of electrons were accelerated between 5555 keV and 425425 keV by the CIR

    The MUCHFUSS photometric campaign

    Full text link
    Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light curve variations like reflection effects and often also eclipses. To search for such objects we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P=0.168938P=0.168938~d) with a low-mass M dwarf companion (0.116M0.116 M_{\rm \odot}). Three more reflection effect binaries found in the course of the campaign were already published, two of them are eclipsing systems, in one system only showing the reflection effect but no eclipses the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15\% and the fraction of close substellar companions in sdB binaries might be as high as 8.0%8.0\%. This would result in a close substellar companion fraction to sdB stars of about 3\%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might be a hint that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.Comment: accepted for A&
    corecore