2,594 research outputs found
Interpretation of increased energetic particle flux measurements by SEPT aboard the STEREO spacecraft and contamination
Context. Interplanetary (IP) shocks are known to be accelerators of energetic
charged particles observed in-situ in the heliosphere. However, the
acceleration of near-relativistic electrons by shocks in the interplanetary
medium is often questioned. On 9 August 2011 a Corotating Interaction Region
(CIR) passed STEREO B (STB) that resulted in a flux increase in the electron
and ion channels of the Solar Electron and Proton Telescope (SEPT). Because
electron measurements in the few keV to several 100 keV range rely on the
so-called magnet foil technique, which is utilized by SEPT, ions can contribute
to the electron channels. Aims. We aim to investigate whether the flux increase
in the electron channels of SEPT during the CIR event on 9 August 2011 is
caused by ion contamination only. Methods. We compute the SEPT response
functions for protons and helium utilizing an updated GEANT4 model of SEPT. The
CIR energetic particle ion spectra for protons and helium are assumed to follow
a Band function in energy per nucleon with a constant helium to proton ratio.
Results. Our analysis leads to a helium to proton ratio of 16.9% and a proton
flux following a Band function with the parameters /
(cm2 s sr MeV/nuc.), keV/nuc. and spectral indices of and which are in good agreement with measurements by
the Suprathermal Ion Telescope (SIT) aboard STB. Conclusions. Since our results
explain the SEPT measurements, we conclude that no significant amount of
electrons were accelerated between keV and keV by the CIR
The MUCHFUSS photometric campaign
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost
almost all of their hydrogen envelopes. This mass loss is often triggered by
common envelope interactions with close stellar or even substellar companions.
Cool companions like late-type stars or brown dwarfs are detectable via
characteristic light curve variations like reflection effects and often also
eclipses. To search for such objects we obtained multi-band light curves of 26
close sdO/B binary candidates from the MUCHFUSS project with the BUSCA
instrument. We discovered a new eclipsing reflection effect system
(~d) with a low-mass M dwarf companion ().
Three more reflection effect binaries found in the course of the campaign were
already published, two of them are eclipsing systems, in one system only
showing the reflection effect but no eclipses the sdB primary is found to be
pulsating. Amongst the targets without reflection effect a new long-period sdB
pulsator was discovered and irregular light variations were found in two sdO
stars. The found light variations allowed us to constrain the fraction of
reflection effect binaries and the substellar companion fraction around sdB
stars. The minimum fraction of reflection effect systems amongst the close sdB
binaries might be greater than 15\% and the fraction of close substellar
companions in sdB binaries might be as high as . This would result in a
close substellar companion fraction to sdB stars of about 3\%. This fraction is
much higher than the fraction of brown dwarfs around possible progenitor
systems, which are solar-type stars with substellar companions around 1 AU, as
well as close binary white dwarfs with brown dwarf companions. This might be a
hint that common envelope interactions with substellar objects are
preferentially followed by a hot subdwarf phase.Comment: accepted for A&
- …
