2,339 research outputs found

    Can osteoarthritis be treated with light?

    Get PDF
    Osteoarthritis is becoming more problematic as the population ages. Recent reports suggest that the benefit of anti-inflammatory drugs is unimpressive and the incidence of side effects is worrying. Low-level laser (light) therapy (LLLT) is an alternative approach with no known side effects and with reports of substantial therapeutic efficacy in osteoarthritis. In this issue of Arthritis Research & Therapy, Alves and colleagues used a rat model of osteoarthritis produced by intra-articular injection of the cartilage-degrading enzyme papain to test 810-nm LLLT. A single application of LLLT produced significant reductions in inflammatory cell infiltration and inflammatory cytokines 24 hours later. A lower laser power was more effective than a higher laser power. However, more work is necessary before the title question can be answered in the affirmative

    Low tillering cereals, early maturity of cereals, cereal variety and reduced branching lupins.

    Get PDF
    Trial 85C62 - growth and water use of low tillering cereals. Trial 85C62 - yield potential of low tillering cereals. Trial WEUNI - response of low tillering breeding lines and standard varieties to sowing rate. Trial 85C45 - effect of flowering date, seeding rate, deep tillage and applied nitrogen on yield of barley. Trial 85C61 - wheat variety x management interaction on sandplain. Trial 85C55 - growth and water use of reduced branching lupins. Trial 85C56 - normal and reduced branching lupins - planting density response

    Far infrared radiation (FIR): Its biological effects and medical applications

    Get PDF
    Far infrared (FIR) radiation (λ=3–100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3–12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.National Institutes of Health (U.S.) (R01AI050875

    Photobiomodulation : lasers vs. light emitting diodes?

    Get PDF
    Correction: Volume: 18 Issue: 1 Pages: 259-259 DOI: 10.1039/c8pp90049c Accession Number: WOS:000457260400025Photobiomodulation (PBM) is a treatment method based on research findings showing that irradiation with certain wavelengths of red or near-infrared light has been shown to produce a range of physiological effects in cells, tissues, animals and humans. Scientific research into PBM was initially started in the late 1960s by utilizing the newly invented (1960) lasers, and the therapy rapidly became known as low-level laser therapy. It was mainly used for wound healing and reduction of pain and inflammation. Despite other light sources being available during the first 40 years of PBM research, lasers remained by far the most commonly employed device, and in fact, some authors insisted that lasers were essential to the therapeutic benefit. Collimated, coherent, highly monochromatic beams with the possibility of high power densities were considered preferable. However in recent years, non-coherent light sources such as light-emitting diodes (LEDs) and broad-band lamps have become common. Advantages of LEDs include no laser safety considerations, ease of home use, ability to irradiate a large area of tissue at once, possibility of wearable devices, and much lower cost per mW. LED photobiomodulation is here to stay.Peer reviewe

    Inorganic salts and antimicrobial photodynamic Therapy : mechanistic conundrums?

    Get PDF
    Abstract: We have recently discovered that the photodynamic action of many different photosensitizers (PSs) can be dramatically potentiated by addition of a solution containing a range of different inorganic salts. Most of these studies have centered around antimicrobial photodynamic inactivation that kills Gram-negative and Gram-positive bacteria in suspension. Addition of nontoxic water-soluble salts during illumination can kill up to six additional logs of bacterial cells (one million-fold improvement). The PSs investigated range from those that undergo mainly Type I photochemical mechanisms (electron transfer to produce superoxide, hydrogen peroxide, and hydroxyl radicals), such as phenothiazinium dyes, fullerenes, and titanium dioxide, to those that are mainly Type II (energy transfer to produce singlet oxygen), such as porphyrins, and Rose Bengal. At one extreme of the salts is sodium azide, that quenches singlet oxygen but can produce azide radicals (presumed to be highly reactive) via electron transfer from photoexcited phenothiazinium dyes. Potassium iodide is oxidized to molecular iodine by both Type I and Type II PSs, but may also form reactive iodine species. Potassium bromide is oxidized to hypobromite, but only by titanium dioxide photocatalysis (Type I). Potassium thiocyanate appears to require a mixture of Type I and Type II photochemistry to first produce sulfite, that can then form the sulfur trioxide radical anion. Potassium selenocyanate can react with either Type I or Type II (or indeed with other oxidizing agents) to produce the semi-stable selenocyanogen (SCN)2. Finally, sodium nitrite may react with either Type I or Type II PSs to produce peroxynitrate (again, semi-stable) that can kill bacteria and nitrate tyrosine. Many of these salts (except azide) are non-toxic, and may be clinically applicable

    Early sowing of ceral crops in low rainfall areas

    Get PDF
    One of the objectives of the Department of Agriculture\u27s crop research in the low rainfall, northern wheatbelt is to develop crop varieties and management practices that will make best use of stored water on both sandplain and fine textured soils. Sowing a crop early will improve its water use efficiency and yiel in low rainfall areas

    Rheumatoid Arthritis-Associated Interstitial Lung Disease: Diagnostic Dilemma

    Get PDF
    Interstitial lung disease (ILD) is an increasingly recognized complication of rheumatoid arthritis (RA) contributing to significantly increased morbidity and mortality. Diagnosis can be challenging since patients are unlikely to report dyspnea due to an overall decrease in physical activity with advanced arthritic symptoms. Additionally, infections, drug toxicity, and environmental toxins can mimic ILD, creating significant diagnostic dilemmas for the clinician. In this paper we will explore an effective clinical algorithm for the diagnosis of RA-ILD. We will also discuss features of drug-related toxicities, infections, and environmental toxins that comprise the main entities in the differential diagnosis of RA-ILD. Finally, we will explore the known and experimental treatment options that may have some benefit in the treatment of RA-ILD

    Trial 86C63 rotation, deep ripping and water use and Trial 87GE97 cereal management trials

    Get PDF
    To examine the value of a package approach to growing cereals in the northern agricultural region. Treatments included planting date , species (wheat v barley) and variety (differing in maturity), as well as deep ripping and fungicide spray.87GE97 To examine the effect of different rotational histories, particularly residual water, on following crops. Barley, wheat, lupins, medic.86C6

    Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice

    Get PDF
    Low-level laser (light) therapy (LLLT) promotes wound healing, reduces pain and inflammation, and prevents tissue death. Studies have explored the effects of various radiant exposures on the effect of LLLT; however, studies of wavelength dependency in in vivo models are less common. In the present study, the healing effects of LLLT mediated by different wavelengths of light in the red and near-infrared (NIR) wavelength regions (635, 730, 810, and 980 nm) delivered at constant fluence (4 J/cm2) and fluence rate (10 mW/cm2) were evaluated in a mouse model of partial-thickness dermal abrasion. Wavelengths of 635 and 810 nm were found to be effective in promoting the healing of dermal abrasions. However, treatment using 730- and 980-nm wavelengths showed no sign of stimulated healing. Healing was maximally augmented in mice treated with an 810-nm wavelength, as evidenced by significant wound area reduction (p < 0.05), enhanced collagen accumulation, and complete re-epithelialization as compared to other wavelengths and non-illuminated controls. Significant acceleration of re-epithelialization and cellular proliferation revealed by immunofluorescence staining for cytokeratin-14 and proliferating cell nuclear antigen (p < 0.05) was evident in the 810-nm wavelength compared with other groups. Photobiomodulation mediated by red (635 nm) and NIR (810 nm) light suggests that the biological response of the wound tissue depends on the wavelength employed. The effectiveness of 810-nm wavelength agrees with previous publications and, together with the partial effectiveness of 635 nm and the ineffectiveness of 730 and 980 nm wavelengths, can be explained by the absorption spectrum of cytochrome c oxidase, the candidate mitochondrial chromophore in LLLT.United States. National Institutes of Healt

    Photobiomodulation for Alzheimer’s disease : translating basic research to clinical application

    Get PDF
    Abstract:One of the challenges in translating new therapeutic approaches to the patient bedside lies in bridging the gap between scientists who are conducting basic laboratory research and medical practitioners who are not exposed to highly specialized journals. This review covers the literature on photobiomodulation therapy as a novel approach to prevent and treat Alzheimer’s disease, aiming to bridge that gap by gathering together the terms and technical specifications into a single concise suggestion for a treatment protocol. In light of the predicted doubling in the number of people affected by dementia and Alzheimer’s disease within the next 30 years, a treatment option which has already shown promising results in cell culture studies and animal models, and whose safety has already been proven in humans, must not be left in the dark. This review covers the mechanistic action of photobiomodulation therapy against Alzheimer’s disease at a cellular level. Safe and effective doses have been found in animal models, and the first human case studies have provided reasons to undertake large-scale clinical trials. A brief discussion of the minimally effective and maximum tolerated dose concludes this review, and provides the basis for a successful translation from bench to bedside
    corecore