885 research outputs found

    ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    Get PDF
    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is ∼\sim\,39∘39^{\circ}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.Comment: 10 pages, 9 figures, Accepted for publication in the Ap

    Contribution of the nuclear field shift to kinetic uranium isotope fractionation

    Get PDF
    Isotopic fractionation of heavy elements (e.g., >100 amu) often invokes the nuclear field shift effect, which is due to the impact of the elements’ large nuclei on electron density. In particular, it has been explicitly described for uranium (U) at equilibrium and during kinetic isotope fractionation in abiotic mercury reactions. By following the fractionation of 233U, 235U, 236U and 238U during the enzymatic reduction of hexavalent U to tetravalent U by the bacterium Shewanella oneidensis, we provide the first direct evidence of the nuclear field shift effect during biologically controlled kinetic isotope fractionation. Here, we observed the odd-even staggering trend between fractionation factors of each isotope and their nuclear masses, and show that fractionation factors are correlated better with the nuclear volume than the mass. Additionally, by computing the relative contributions of the conventional mass-dependent effect (vibrational energy) and the mass-independent effect (nuclear field shift), we demonstrate that the experimental nuclear field shift effect is smaller than the calculated equilibrium value and that this discrepancy is responsible for the kinetic fractionation factor being lower than that predicted at equilibrium

    Linear polarization in the nucleus of M87 at 7 mm and 1.3 cm

    Get PDF
    We report on high angular resolution polarimetric observations of the nearby radio galaxy M87 using the Very Long Baseline Array at 24 GHz (λ = 1.3 cm) and 43 GHz (λ = 7 mm) in 2017–2018. New images of the linear polarization substructure in the nuclear region are presented, characterized by a two-component pattern of polarized intensity and smooth rotation of the polarization plane around the 43 GHz core. From a comparison with an analogous dataset from 2007, we find that this global polarization pattern remains stable on a time interval of 11 yr, while showing smaller month-scale variability. We discuss the possible Faraday rotation toward the M87 nucleus at centimeter to millimeter wavelengths. These results can be interpreted in a scenario where the observed polarimetric pattern is associated with the magnetic structure in the confining magnetohydrodynamic wind, which also serves as the source of the observed Faraday rotation

    A study of 15N14N isotopic exchange over cobalt molybdenum nitrides

    Get PDF
    The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the Co–Mo–N system to be a strong function of pretreatment and worthy of further consideration

    Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

    Get PDF
    The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS), the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd

    Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide

    Get PDF
    We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α1→2)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative
    • …
    corecore