1,268 research outputs found

    Robust Ferroelectric State in Multiferroic Mn1x_{1-x}Znx_xWO4_4

    Full text link
    We report the remarkably robust ferroelectric state in the multiferroic compound Mn1x_{1-x}Znx_xWO4_4. The substitution of the magnetic Mn2+^{2+} with nonmagnetic Zn2+^{2+} reduces the magnetic exchange and provides control of the various magnetic and multiferroic states of MnWO4_4. Only 5 % of Zn substitution results in a complete suppression of the frustrated collinear (paraelectric) low temperature phase. The helical magnetic and ferroelectric phase develops as the ground state. The multiferroic state is stable up to a high level of substitution of more than 50 %. The magnetic, thermodynamic, and dielectric properties as well as the ferroelectric polarization of single crystals of Mn1x_{1-x}Znx_xWO4_4 are studied for different substitutions up to x=0.5. The magnetic phases have been identified in single crystal neutron scattering experiments. The ferroelectric polarization scales with the neutron intensity of the incommensurate peak of the helical phase.Comment: 6 pages, 8 figure

    Knowledge and Skill

    Get PDF

    Theoretical analysis of neutron scattering results for quasi-two dimensional ferromagnets

    Full text link
    A theoretical study has been carried out to analyse the available results from the inelastic neutron scattering experiment performed on a quasi-two dimensional spin-1/2 ferromagnetic material K2CuF4K_2CuF_4. Our formalism is based on a conventional semi-classical like treatment involving a model of an ideal gas of vortices/anti-vortices corresponding to an anisotropic XY Heisenberg ferromagnet on a square lattice. The results for dynamical structure functions for our model corresponding to spin-1/2, show occurrence of negative values in a large range of energy transfer even encompassing the experimental range, when convoluted with a realistic spectral window function. This result indicates failure of the conventional theoretical framework to be applicable to the experimental situation corresponding to low spin systems. A full quantum formalism seems essential for treating such systems.Comment: 16 pages, 6 figures, 1 Table Submitted for publicatio

    EFX Allocations: Simplifications and Improvements

    Get PDF
    The existence of EFX allocations is a fundamental open problem in discretefair division. Given a set of agents and indivisible goods, the goal is todetermine the existence of an allocation where no agent envies anotherfollowing the removal of any single good from the other agent's bundle. Sincethe general problem has been illusive, progress is made on two fronts: (i)(i)proving existence when the number of agents is small, (ii)(ii) proving existenceof relaxations of EFX. In this paper, we improve results on both fronts (andsimplify in one of the cases). We prove the existence of EFX allocations with three agents, restricting onlyone agent to have an MMS-feasible valuation function (a strict generalizationof nice-cancelable valuation functions introduced by Berger et al. whichsubsumes additive, budget-additive and unit demand valuation functions). Theother agents may have any monotone valuation functions. Our proof technique issignificantly simpler and shorter than the proof by Chaudhury et al. onexistence of EFX allocations when there are three agents with additivevaluation functions and therefore more accessible. Secondly, we consider relaxations of EFX allocations, namely, approximate-EFXallocations and EFX allocations with few unallocated goods (charity). Chaudhuryet al. showed the existence of (1ϵ)(1-\epsilon)-EFX allocation withO((n/ϵ)45)O((n/\epsilon)^{\frac{4}{5}}) charity by establishing a connection to aproblem in extremal combinatorics. We improve their result and prove theexistence of (1ϵ)(1-\epsilon)-EFX allocations with O~((n/ϵ)12)\tilde{O}((n/\epsilon)^{\frac{1}{2}}) charity. In fact, some of our techniques can be usedto prove improved upper-bounds on a problem in zero-sum combinatoricsintroduced by Alon and Krivelevich.<br

    Magnetic Field resulting from non-linear electrical transport in single crystals of charge-ordered Pr0.63_{0.63} Ca0.37_{0.37} MnO3_{3}}

    Full text link
    In this letter we report that the current induced destabilization of the charge ordered (CO) state in a rare-earth manganite gives rise to regions with ferromagnetic correlation. We did this experiment by measurement of the I-V curves in single crystal of the CO system Pr0.63_{0.63}Ca0.37_{0.37}MnO3_{3} and simultanously measuring the magnetization of the current carrying conductor using a high Tc_c SQUID working at T = 77K. We have found that the current induced destabilization of the CO state leads to a regime of negative differential resistance which leads to a small enhancement of the magnetization of the sample, indicating ferromagnetically aligned moments.Comment: 4 pages LateX, 4 eps figure

    Optical Flow Estimation in the Deep Learning Age

    Full text link
    Akin to many subareas of computer vision, the recent advances in deep learning have also significantly influenced the literature on optical flow. Previously, the literature had been dominated by classical energy-based models, which formulate optical flow estimation as an energy minimization problem. However, as the practical benefits of Convolutional Neural Networks (CNNs) over conventional methods have become apparent in numerous areas of computer vision and beyond, they have also seen increased adoption in the context of motion estimation to the point where the current state of the art in terms of accuracy is set by CNN approaches. We first review this transition as well as the developments from early work to the current state of CNNs for optical flow estimation. Alongside, we discuss some of their technical details and compare them to recapitulate which technical contribution led to the most significant accuracy improvements. Then we provide an overview of the various optical flow approaches introduced in the deep learning age, including those based on alternative learning paradigms (e.g., unsupervised and semi-supervised methods) as well as the extension to the multi-frame case, which is able to yield further accuracy improvements.Comment: To appear as a book chapter in Modelling Human Motion, N. Noceti, A. Sciutti and F. Rea, Eds., Springer, 202

    Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis.

    Get PDF
    Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development.Hongyu Zhang, Ming Luo, Robert C. Day, Mark J. Talbot, Aneta Ivanova, Anthony R. Ashton, Abed M. Chaudhury, Richard C. Macknight, Maria Hrmova, and Anna M. Koltuno

    Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems

    Get PDF
    Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory

    Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2

    Get PDF
    RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 ‘other’ complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of ‘other’ targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction
    corecore