46 research outputs found
Formulations of Plant Growth-Promoting Microbes for Field Applications
Development of a plant growth-promoting (PGP) microbe needs several steps starting with isolation of a pure culture, screening of its PGP or antagonistic traits by means of different efficacy bioassays performed in vitro, in vivo or in trials under greenhouse and/or field conditions. In order to maximize the potential of an efficient PGP microbe, it is essential to optimize mass multiplication protocols that promote product quality and quantity and a product formulation that enhances bioactivity, preserves shelf life and aids product delivery. Selection of formulation is very crucial as it can determine the success or failure of a PGP microbe. A good carrier material should be able to deliver the right number of viable cells in good physiological conditions, easy to use and economically affordable by the farmers. Several carrier materials have been used in formulation that include peat, talc, charcoal, cellulose powder, farm yard manure, vermicompost and compost, lignite, bagasse and press mud. Each formulation has its advantages and disadvantages but the peat based carrier material is widely used in different part of the world. This chapter gives a comprehensive analysis of different formulations and the quality of inoculants available in the market, with a case study conducted in five-states of India
Assessment Of Pichia Anomala (Strain K) Efficacy Against Blue Mould Of Apples When Applied Pre- Or Post-Harvest Under Laboratory Conditions And In Orchard Trials
Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved
Suppression of Botrytis bunch rot in Chardonnay grapevines by induction of host resistance and fungal antagonism
Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans® and reduced fungicides application
Impact of storage conditions on fungal community composition of green coffee beans Coffea arabica
Improvement of Fitness and Efficacy of a Fire Blight Biocontrol Agent via Nutritional Enhancement Combined with Osmoadaptation ▿
The efficacy of Pseudomonas fluorescens EPS62e in the biocontrol of Erwinia amylovora was improved by a procedure of physiological adaptation to increase colonization and survival in the phytosphere of rosaceous plants. The procedure consisted of osmoadaptation (OA) and nutritional enhancement (NE). OA was based on saline stress and osmolyte amendment of the growth medium during inoculum preparation. NE consisted of addition of glycine and Tween 80 to the formulation. NE and OA increased the growth rate and carrying capacity of EPS62e under high-relative-humidity (RH) conditions and improved survival at low RH on flowers under controlled environmental conditions. NE did not promote growth or affect infection capacity of E. amylovora. The effect of both methods was tested in the field by following the population of EPS62e using quantitative PCR (Q-PCR) (total population) and CFU counting (culturable population) methods. Following field application, EPS62e colonized blossoms, but it was stressed, as indicated by a sharp decrease in culturable compared to total population levels. However, once established in flowers and at the end of bloom, almost all the total population was culturable. The physiological adaptation treatments increased population levels of EPS62e over those of nonadapted cells during the late stage of the flowering period. Control of fire blight infections in flowers and immature fruits was tested by field application of EPS62e and subsequent inoculation with E. amylovora under controlled-environment conditions. The efficacy of fire blight control increased significantly with the combination of nutritional enhancement and osmoadaptation, in comparison with the absence of physiological adaptation
