115 research outputs found

    Numerical simulations of micro jets produced with a double flow focusing nozzle

    Get PDF
    Stable and reliable micro jets are important for many applications. Double flow focused micro jets are a novelty with an important advantage of significantly reduced sample consumption. Numerical simulations of double flow focused micro jets are a highly complex task. They represents a great computational challenge due to the multiphase nature of the problem, strong coupling between the gas and the two liquids and the sub-micron size cells needed. Simulations were performed with the open source computational fluid dynamics toolbox called OpenFOAM. Two multiphase solvers were used, one of which was modified in order to properly describe the interface between the focusing liquid and the gas. In this study two different incompressible physical models were considered and compared. A model with no mixing of the two fluids (multiphaseInterFoam solver) and a model where the diffusion of the two fluids is permitted (modified interMixingFoam solver). The results of simulations for the two different physical models using the same inlet parameters are presented. Additionally, a parametric analysis for the mixing case was performed to study the effects of different parameters on the jet formation. Particularly how the different diffusion values couple with the jet length, diameter and its stability. Results show a match in jet diameter and jet length for both models when the same set of parameters is used

    Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition

    Get PDF
    Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    Development of Transient Recombinant Expression and Affinity Chromatography Systems for Human Fibrinogen

    Get PDF
    Fibrin forms the structural scaffold of blood clots and has great potential for biomaterial applications. Creating recombinant expression systems of fibrinogen, fibrin’s soluble precursor, would advance the ability to construct mutational libraries that would enable structure–function studies of fibrinogen and expand the utility of fibrin as a biomaterial. Despite these needs, recombinant fibrinogen expression systems, thus far, have relied on the time-consuming creation of stable cell lines. Here we present tests of a transient fibrinogen expression system that can rapidly generate yields of 8–12 mg/L using suspension HEK Expi293(TM) cells. We report results from two different plasmid systems encoding the fibrinogen cDNAs and two different transfection reagents. In addition, we describe a novel, affinity-based approach to purifying fibrinogen from complex media such as human plasma. We show that using a high-affinity peptide which mimics fibrin’s knob ‘A’ sequence enables the purification of 50–75% of fibrinogen present in plasma. Having robust expression and purification systems of fibrinogen will enable future studies of basic fibrin(ogen) biology, while paving the way for the ubiquitous use of fibrin as a biomaterial

    PET of Brain Prion Protein Amyloid in Gerstmann–StrĂ€ussler–Scheinker Disease

    Get PDF
    In vivo amyloid PET imaging was carried out on six symptomatic and asymptomatic carriers of PRNP mutations associated with the Gerstmann-StrÀussler-Scheinker (GSS) disease, a rare familial neurodegenerative brain disorder demonstrating prion amyloid neuropathology, using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([F-18]FDDNP). 2-Deoxy-2-[F-18]fluoro-d-glucose PET ([F-18]FDG) and magnetic resonance imaging (MRI) scans were also performed in each subject. Increased [F-18]FDDNP binding was detectable in cerebellum, neocortex and subcortical areas of all symptomatic gene carriers in close association with the experienced clinical symptoms. Parallel glucose metabolism ([F-18]FDG) reduction was observed in neocortex, basal ganglia and/or thalamus, which supports the close relationship between [F-18]FDDNP binding and neuronal dysfunction. Two asymptomatic gene carriers displayed no cortical [F-18]FDDNP binding, yet progressive [F-18]FDDNP retention in caudate nucleus and thalamus was seen at 1- and 2-year follow-up in the older asymptomatic subject. In vitro FDDNP labeling experiments on brain tissue specimens from deceased GSS subjects not participating in the in vivo studies indicated that in vivo accumulation of [F-18]FDDNP in subcortical structures, neocortices and cerebellum closely related to the distribution of prion protein pathology. These results demonstrate the feasibility of detecting prion protein accumulation in living patients with [F-18]FDDNP PET, and suggest an opportunity for its application to follow disease progression and monitor therapeutic interventions

    A multi-laboratory comparison of photon migration instruments and their performances – the BitMap Exercise

    Get PDF
    Performance assessment and standardization are indispensable for instruments of clinical relevance in general and clinical instrumentation based on photon migration/diffuse optics in particular. In this direction, a multi-laboratory exercise was initiated with the aim of assessing and comparing their performances. 29 diffuse optical instruments belonging to 11 partner institutions of a European level Marie Curie Consortium BitMap1 were considered for this exercise. The enrolled instruments covered different approaches (continuous wave, CW; frequency domain, FD; time domain, TD and spatial frequency domain imaging, SFDI) and applications (e.g. mammography, oximetry, functional imaging, tissue spectroscopy). 10 different tests from 3 well-accepted protocols, namely, the MEDPHOT2, the BIP3, and the nEUROPt4 protocols were chosen for the exercise and the necessary phantoms kits were circulated across labs and institutions enrolled in the study. A brief outline of the methodology of the exercise is presented here. Mainly, the design of some of the synthetic descriptors, (single numeric values used to summarize the result of a test and facilitate comparison between instruments) for some of the tests will be discussed.. Future actions of the exercise aim at deploying these measurements onto an open data repository and investigating common analysis tools for the whole dataset
    • 

    corecore