90 research outputs found

    FPGA based in-memory AI computing

    Get PDF
    The advent of AI in vehicles of all kinds is simultaneously creating the need for more and most often also very large computing capacities. Depending on the type of vehicle, this gives rise to various problems: while overall hardware and engineering costs dominate for airplanes, in fully electrical cars the costs for computing hardware are more of a matter. Common in both domains are tight requirements on the size, weight and space of the hardware, especially for drones and satellites, where this is most challenging. For airplanes and especially for satellites, an additional challenge is the radiation resistance of the usually very memory-intensive AI systems. We therefore propose an FPGA-based in-memory AI computation methodology, which is so far only applicable for small AI systems, but works exclusively with the local memory elements of FPGAs: lookup tables (LUTs) and registers. By not using external and thus slow, inefficient and radiation-sensitive DRAM, but only local SRAM, we can make AI systems faster, lighter and more efficient than is possible with conventional GPUs or AI accelerators. All known radiation hardening techniques for FPGAs also work for our systems

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury.

    Get PDF
    INTRODUCTION Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021

    The HeMoVal study protocol: a prospective international multicenter cohort study to validate cerebrospinal fluid hemoglobin as a monitoring biomarker for aneurysmal subarachnoid hemorrhage related secondary brain injury

    Full text link
    Introduction: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. Methods: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. Discussion: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH

    Hyperphenylalaninemia: Effect of late treatment in to siblings

    No full text
    The effect of late treatment with a low phenylalanine diet on cognitive, motor and social development in two siblings with persistent hyperphenylalaninemia is described. The disease state is characterized by the results of laboratory investigations including serum phenylalanine and serum tyrosine levels and aromatic acid excretion following L-phenylalanine load in the patients and their parents. A suggestion is made to treat patients with persistent hyperphenylalaninemia if repeated serum phenylalanine levels on unrestricted diet exceed 12 mg/100 ml. Es wird der Effekt einer spät einsetzenden phenylalaninarmen Diät bei zwei Brüdern mit persistierender Hyperphenylalaninämie beschrieben. Der Krankheitszustand wird charakterisiert durch die Ergebnisse einer oralen LPhenylalaninbelastung auf Serumspiegel von Phenylalanin und Tyrosin und auf die Ausscheidung aromatischer Säuren im Urin bei den Patienten sowie deren Eltern. Es wird vorgeschlagen, Patienten mit persistierender Hyperphenylalaninämie dann zu behandeln, wenn wiederholte Messungen von Phenylalanin im Serum unter normaler Kost die Grenze von 12 mg/100 ml überschreiten

    Durchführung der Beikost in der Praxis

    No full text

    Mehrsprachigkeit ist gesund: Einsprachigkeit ist heilbar

    No full text
    • …
    corecore