392 research outputs found
Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq.Francis Crick Institute, which receives its core funding from Cancer Research UK [FC001-157]; Medical Research Council [FC001-157]; Wellcome Trust [FC001-157]; National Institute for Health Research; Biotechnology and Biological Sciences Research Council [BB/K013378/1]This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/nar/gkw76
The GEO600 squeezed light source
The next upgrade of the GEO600 gravitational wave detector is scheduled for
2010 and will, in particular, involve the implementation of squeezed light. The
required non-classical light source is assembled on a 1.5m^2 breadboard and
includes a full coherent control system and a diagnostic balanced homodyne
detector. Here, we present the first experimental characterization of this
setup as well as a detailed description of its optical layout. A squeezed
quantum noise of up to 9dB below the shot-noise level was observed in the
detection band between 10Hz and 10kHz. We also present an analysis of the
optical loss in our experiment and provide an estimation of the possible
non-classical sensitivity improvement of the future squeezed light enhanced
GEO600 detector.Comment: 8 pages, 4 figure
Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry
The spectral properties of a two-dimensional microwave billiard showing
threefold symmetry have been studied with a new experimental technique. This
method is based on the behavior of the eigenmodes under variation of a phase
shift between two input channels, which strongly depends on the symmetries of
the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been
identified by a simple and purely experimental method. This set clearly shows
Gaussian unitary ensemble statistics, although the system is time-reversal
invariant.Comment: RevTex 4, 5 figure
Treatment of Parturition-Induced Rupture of Pubic Symphysis after Spontaneous Vaginal Delivery
Parturition-induced rupture of pubic symphysis is an uncommon but severe complication of delivery. Characteristic symptoms are an immediate onset of suprapubic and/or sacroiliac pain within the first 24 hours postpartum, often accompanied by an audible crack. Diagnosis can be confirmed by imaging including X-ray, Magnet Resonance Imaging (MRI), and ultrasound. However, there is no consensus on the optimal therapy. Conservative treatment is predominantly used. It has been reported that, in cases of extreme symphyseal rupture with pelvic instability or persisting pain after conservative therapy, operative treatment achieves a successful outcome. In this report, we present a case of a twenty-year-old primigravida who developed suprapubic pain after a nonoperative vaginal birth with shoulder dystocia. A rupture of pubic symphysis with a gap of 60 mm was confirmed by means of X-ray and MRI. Simultaneously, other pelvic joint injuries could be excluded. Operative treatment by an open reduction and internal plate fixation yielded excellent results
First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard
We report on first experimental signatures for chaos-assisted tunneling in a
two-dimensional annular billiard. Measurements of microwave spectra from a
superconducting cavity with high frequency resolution are combined with
electromagnetic field distributions experimentally determined from a normal
conducting twin cavity with high spatial resolution to resolve eigenmodes with
properly identified quantum numbers. Distributions of so-called quasi-doublet
splittings serve as basic observables for the tunneling between whispering
gallery type modes localized to congruent, but distinct tori which are coupled
weakly to irregular eigenstates associated with the chaotic region in phase
space.Comment: 5 pages RevTex, 5 low-resolution figures (high-resolution figures:
http://linac.ikp.physik.tu-darmstadt.de/heiko/chaospub.html, to be published
in Phys. Rev. Let
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
Experimental Test of a Trace Formula for a Chaotic Three Dimensional Microwave Cavity
We have measured resonance spectra in a superconducting microwave cavity with
the shape of a three-dimensional generalized Bunimovich stadium billiard and
analyzed their spectral fluctuation properties. The experimental length
spectrum exhibits contributions from periodic orbits of non-generic modes and
from unstable periodic orbit of the underlying classical system. It is well
reproduced by our theoretical calculations based on the trace formula derived
by Balian and Duplantier for chaotic electromagnetic cavities.Comment: 4 pages, 5 figures (reduced quality
Design of a speed meter interferometer proof-of-principle experiment
The second generation of large scale interferometric gravitational wave
detectors will be limited by quantum noise over a wide frequency range in their
detection band. Further sensitivity improvements for future upgrades or new
detectors beyond the second generation motivate the development of measurement
schemes to mitigate the impact of quantum noise in these instruments. Two
strands of development are being pursued to reach this goal, focusing both on
modifications of the well-established Michelson detector configuration and
development of different detector topologies. In this paper, we present the
design of the world's first Sagnac speed meter interferometer which is
currently being constructed at the University of Glasgow. With this
proof-of-principle experiment we aim to demonstrate the theoretically predicted
lower quantum noise in a Sagnac interferometer compared to an equivalent
Michelson interferometer, to qualify Sagnac speed meters for further research
towards an implementation in a future generation large scale gravitational wave
detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
Modeling Complex Nuclear Spectra - Regularity versus Chaos
A statistical analysis of the spectrum of two particle - two hole doorway
states in a finite nucleus is performed. On the unperturbed mean-field level
sizable attractive correlations are present in such a spectrum. Including
particle-hole rescattering effects via the residual interaction introduces
repulsive dynamical correlations which generate the fluctuation properties
characteristic of the Gaussian Orthogonal Ensemble. This signals that the
underlying dynamics becomes chaotic. This feature turns out to be independent
of the detailed form of the residual interaction and hence reflects the generic
nature of the fluctuations studied.Comment: 8 pages of text (LATEX), figures (not included, available from the
authors), Feb 9
- …