37 research outputs found

    Nucleotides in neuroregeneration and neuroprotection

    Get PDF
    AbstractBrain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation.This article is part of the Special Issue entitled ‘Purines in Neurodegeneration and Neuroregeneration’

    Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons

    Get PDF
    Proteolytic cleavage of the Na(+)/Ca(2+) exchanger (NCX) by calpains impairs calcium homeostasis, leading to a delayed calcium overload and excitotoxic cell death. However, it is not known whether reversal of the exchanger contributes to activate calpains and trigger neuronal death. We investigated the role of the reversal of the NCX in Ca(2+) dynamics, calpain activation and cell viability, in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-stimulated hippocampal neurons. Selective overactivation of AMPA receptors caused the reversal of the NCX, which accounted for approximately 30% of the rise in intracellular free calcium concentration ([Ca(2+)](i)). The NCX reverse-mode inhibitor, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943), partially inhibited the initial increase in [Ca(2+)](i), and prevented a delayed increase in [Ca(2+)](i). In parallel, overactivation of AMPA receptors strongly activated calpains and led to the proteolysis of NCX3. KB-R7943 prevented calpain activation, cleavage of NCX3 and was neuroprotective. Silencing of NCX3 reduced Ca(2+) uptake, calpain activation and was neuroprotective. Our data show for the first time that NCX reversal is an early event following AMPA receptor stimulation and is linked to the activation of calpains. Since calpain activation subsequently inactivates NCX, causing a secondary Ca(2+) entry, NCX may be viewed as a new suicide substrate operating in a Ca(2+)-dependent loop that triggers cell death and as a target for neuroprotectio

    P2 receptor-mediated modulation of neurotransmitter release—an update

    Get PDF
    Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions

    Ca 2+

    No full text

    Ca2+-activated Nucleotidase 1, a Novel Target Gene for the Transcriptional Repressor DREAM (Downstream Regulatory Element Antagonist Modulator), Is Involved in Protein Folding and Degradation.

    No full text
    DREAM is a Ca(2+)-dependent transcriptional repressor highly expressed in neuronal cells. A number of genes have already been identified as the target of its regulation. Targeted analysis performed on cerebella from transgenic mice expressing a dominant active DREAM mutant (daDREAM) showed a drastic reduction of the amount of transcript of Ca(2+)-activated nucleotidase 1 (CANT1), an endoplasmic reticulum (ER)-Golgi resident Ca(2+)-dependent nucleoside diphosphatase that has been suggested to have a role in glucosylation reactions related to the quality control of proteins in the ER and the Golgi apparatus. CANT1 down-regulation was also found in neuroblastoma SH-SY5Y cells stably overexpressing wild type (wt) DREAM or daDREAM, thus providing a simple cell model to investigate the protein maturation pathway. Pulse-chase experiments demonstrated that the down-regulation of CANT1 is associated with reduced protein secretion and increased degradation rates. Importantly, overexpression of wtDREAM or daDREAM augmented the expression of the EDEM1 gene, which encodes a key component of the ER-associated degradation pathway, suggesting an alternative pathway to enhanced protein degradation. Restoring CANT1 levels in neuroblastoma clones recovered the phenotype, thus confirming a key role of CANT1, and of the regulation of its gene by DREAM, in the control of protein synthesis and degradation

    Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor

    Get PDF
    Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark of Alzheimer's disease (AD). In Neuro-2a, a neuroblastoma cell line that constitutively expresses APP, activation of the P2X7 receptor leads to reduction of α-secretase activity, the opposite effect being obtained by P2Y2 receptor activation. The in vivo approach was made possible by the use of J20 mice, a transgenic mouse model of familial Alzheimer's disease (FAD) expressing human APP mutant protein. This animal exhibits prominent amyloid plaques by six months of age. In vivo inhibition of the P2X7 receptor induced a significant decrease in the number and size of hippocampal amyloid plaques. This reduction is mediated by an increase in the proteolytic processing of APP through α-secretase activity, which correlates with an increase in the phosphorylated form of GSK-3, a less active form of this enzyme. The in vivo findings corroborate the therapeutic potential of P2X7 antagonists in the treatment of FAD

    The transcriptional repressor dream regulates Ca2+ homeostasis and viability in granule cerebellar neurons

    No full text
    The structure of the human NCX3 gene is known and specific enhancers for both muscle and neuronal expression as well as a cAMP response element (CRE) have been identified in the proximal promoter. A direct mechanism for the regulation of gene expression involves the protein DREAM (Downstream Regulatory Element Antagonist Modulator), which has been found to bind to specific DRE sites to repress transcription of several genes. Binding of calcium to DREAM through EF-hand motifs reduces its affinity for DNA, leading to derepression of target genes. We have identified a doublet of DRE sites in the 5' -untranslated region of the NCX3 gene that mediates its repression by DREAM in the cerebellum of transgenic mice . Overexpression of EFmDREAMin hippocampus and cerebellum of transgenic mice significantly reduced NCX3 mRNA and protein levels. Thus, the downregulation of the regulator of calcium homeostasis NCX3 by calcium-regulated DREAM is a striking example of the autoregulatory property of the calcium signal in neurons
    corecore