3,115 research outputs found

    Gauge coupling renormalization in RS1

    Full text link
    We compute the 4D low energy effective gauge coupling at one-loop order in the compact Randall-Sundrum scenario with bulk gauge fields and charged matter, within controlled approximations. While such computations are subtle, they can be important for studying phenomenological issues such as grand unification. Ultraviolet divergences are cut-off using Pauli-Villars regularization so as to respect 5D gauge and general coordinate invariance. The structure of these divergences on branes and in the bulk is elucidated by a 5D position-space analysis. The remaining finite contributions are obtained by a careful analysis of the Kaluza-Klein spectrum. We comment on the agreement between our results and expectations based on the AdS/CFT correspondence, in particular logarithmic sensitivity to the 4D Planck scale.Comment: 17 pages, Latex2e, uses axodraw.sty, new references added. To be published in Nucl. Phys.

    Towers of Gravitational Theories

    Get PDF
    In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.Comment: Awarded second prize for 2006 Gravity Research Foundation essay contes

    Effective Field Theory and Unification in AdS Backgrounds

    Full text link
    This work is an extension of our previous work, hep-th/0204160, which showed how to systematically calculate the high energy evolution of gauge couplings in compact AdS_5 backgrounds. We first directly compute the one-loop effects of massive charged scalar fields on the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk mass scales (which generically are of order the Planck scale) enter only logarithmically in the corrections to the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces our previous calculation, which was based on AdS/CFT duality. We also calculate the effects of scalar fields satisfying non-trivial boundary conditions (relevant for orbifold breaking of bulk symmetries) on the running of gauge couplings.Comment: LaTeX, 27 pages; minor typos fixed, comments adde

    Regge Poles in High-Energy Electron Scattering

    Get PDF
    The possibility that the photon is described by a Regge trajectory is considered, and the effect of this assumption on the analysis of electron-pion, electron-nucleon, and electron-helium scattering is examined in some detail. Partial-wave projections for the various amplitudes are made in the annihilation channel, and a multiparticle unitarity condition is formally imposed by use of the N/D matrix formulation. Since the photon does not have a fixed spin of one, the spin matrix structure is considerably more complicated than in the conventional theory. The amplitudes are written in terms of the Regge poles corresponding to the photon, ρ-ω meson, etc., and the resulting cross sections are given in the interesting high-energy limit. In contrast to the usual analysis, where form factors depend only on the momentum transfer, we find a larger number of independent functions which depend on the energy as well, however, in a characteristic manner. That is, the essential change due to the Regge behavior of the photon is an over-all nonintegral power of the energy occurring in the cross section. The effect of this factor can be experimentally tested and this possibility is discussed

    Singularities of Scattering Amplitudes on Unphysical Sheets and Their Interpretation

    Get PDF
    The analytic structure of two-particle scattering amplitudes on the unphysical sheet of the Riemann surface reached by crossing the two-particle cut is discussed. The singularities of the amplitudes there are shown to be poles and their physical interpretation is studied. The way in which bound states appear on the physical sheet in the Mandelstam representation, both as isolated poles and as cuts, is traced in detail. The properties of partial wave amplitudes and of the full amplitude as a function of energy and angle and of energy and momentum transfer are discussed. Finally, a few remarks are made in connection with unstable states

    The Lorentz integral transform (LIT) method

    Full text link
    The LIT approach is reviewed both for inclusive and exclusive reactions. It is shown that the method reduces a continuum state problem to a bound-state-like problem, which then can be solved with typical bound-state techniques. The LIT approach opens up the possibility to perform ab initio calculations of reactions also for those particle systems which presently are out of reach in conventional approaches with explicit calculations of many-body continuum wave functions. Various LIT applications are discussed ranging from particle systems with two nucleons up to particle systems with seven nucleons.Comment: Lectures delivered at the 4th DAE-BRNS Workshop on Hadron Physics, AMU, Aligarh, India, Feb. 18-23, 2008; 23 pages, 16 figure

    Systematics of Coupling Flows in AdS Backgrounds

    Get PDF
    We give an effective field theory derivation, based on the running of Planck brane gauge correlators, of the large logarithms that arise in the predictions for low energy gauge couplings in compactified AdS}_5 backgrounds, including the one-loop effects of bulk scalars, fermions, and gauge bosons. In contrast to the case of charged scalars coupled to Abelian gauge fields that has been considered previously in the literature, the one-loop corrections are not dominated by a single 4D Kaluza-Klein mode. Nevertheless, in the case of gauge field loops, the amplitudes can be reorganized into a leading logarithmic contribution that is identical to the running in 4D non-Abelian gauge theory, and a term which is not logarithmically enhanced and is analogous to a two-loop effect in 4D. In a warped GUT model broken by the Higgs mechanism in the bulk,we show that the matching scale that appears in the large logarithms induced by the non-Abelian gauge fields is m_{XY}^2/k where m_{XY} is the bulk mass of the XY bosons and k is the AdS curvature. This is in contrast to the UV scale in the logarithmic contributions of scalars, which is simply the bulk mass m. Our results are summarized in a set of simple rules that can be applied to compute the leading logarithmic predictions for coupling constant relations within a given warped GUT model. We present results for both bulk Higgs and boundary breaking of the GUT gauge group.Comment: 22 pages, LaTeX, 3 figures. Comments and references adde

    Studying High Energy Final State Interactions by N/D Method

    Full text link
    We discuss the final state interaction effects at high energies via a multi-channel N/D method. We find that the 2 by 2 charge--exchange final state interactions typically contribute an enhancement factor of a few times 10−210^{-2} in the BB meson decay amplitudes, both for the real and the imaginary part. We also make some discussions on the elastic rescattering effects.Comment: 10 pages, revte

    Subtractive renormalization of the NN scattering amplitude at leading order in chiral effective theory

    Full text link
    The leading-order nucleon-nucleon (NN) potential derived from chiral perturbation theory consists of one-pion exchange plus a short-distance contact interaction. We show that in the 1S0 and 3S1-3D1 channels renormalization of the Lippmann-Schwinger equation for this potential can be achieved by performing one subtraction. This subtraction requires as its only input knowledge of the NN scattering lengths. This procedure leads to a set of integral equations for the partial-wave NN t-matrix which give cutoff-independent results for the corresponding NN phase shifts. This reformulation of the NN scattering equation offers practical advantages, because only observable quantities appear in the integral equation. The scattering equation may then be analytically continued to negative energies, where information on bound-state energies and wave functions can be extracted.Comment: 16 pages, 11 figure

    Phenomenological analysis of the double pion production in nucleon-nucleon collisions up to 2.2 GeV

    Full text link
    With an effective Lagrangian approach, we analyze several NN \to NN\pi\pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440)\to N\sigma in the near threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440)\to \Delta\pi, double-Delta, \Delta(1600) \to N*(1440)\pi, \Delta(1600) \to \Delta\pi and \Delta(1620) \to \Delta\pi. There are also sizeable contributions from \Delta \to \Delta\pi, \Delta \to N\pi, N \to \Delta\pi and nucleon pole at energies close to the threshold. We well reproduce the total cross sections up to beam energies of 2.2 GeV except for the pp\to pp\pi^0\pi^0 channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp \to pp\pi^+\pi^-, pp \to nn\pi^+\pi^+ and pp \to pp\pi^0\pi^0 which are measured at CELSIUS and COSY.Comment: 36 pages, 18 figure
    • 

    corecore