239 research outputs found

    Toughening and creep in multiphase intermetallics through microstructural control

    Get PDF
    The lack of engineering ductility in intermetallics has limited their structural applications, in spite of their attractive specific properties at high temperatures. Over the last decade, research in intermetallics has been stimulated by the discovery of remarkable ductilisation mechanisms in these materials. It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects. The Ti2AlNb based intermetallics in the Ti-Al-Nb system can be ductilised by stabilising thebcc phase of titanium into the structure. The principles of microstructural and compositional optimization developed to achieve adequate plasticity, while retaining creep properties of these alloys, are described. An entirely different approach has been successful in imparting plasticity to intermetallics based on Fe3Al. The addition of carbon to form the Fe3AlC0.5 phase imparts ductility, while enhancing both tensile and creep strength

    Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields

    Full text link
    We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size.Comment: to appear in SIAM Journal on Discrete Mathematic

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Comparative study between proximal femoral nail and proximal femoral nail antirotation in management of unstable trochanteric fractures

    Get PDF
    Background: In the management of peri-trochanteric fractures, intramedullary (IM) devices have proven advantage over extramedullary devices. IM devices allow for stable anatomical fixation of more comminuted fractures without shortening the abductor lever arm or changing the proximal femoral anatomy. Between IM devices like proximal femoral nail (PFN) and proximal femoral nail antirotation (PFNA), the helical blade of latter is believed to provide stability, compression and rotational control of the fracture with higher cut out strength. The following study was undertaken in an attempt to compare these two types of Intra-medullary devices.Methods: Between January 2012 and June 2013, 50 patients with unstable intertrochanteric fractures fulfilling inclusion and exclusion criteria, were randomized into 2 groups to undergo CRIF with either standard PFN (n=25) or PFNA (n=25). They were compared in terms of demography, per-operative variables and postoperative parameters including functional evaluation till 1year postoperatively.Results: Background demographic variables, fracture type and pre-injury ambulatory status were comparable between the groups. Operative duration of surgery, amount of blood loss and number of fluoroscopic images were significantly lower in PFNA group as compared to PFN group. Post op complications like infection, non-union, cut out/z-effect, loss of reduction, re-operation and mortality rates didn’t differ significantly between the groups. Post op functional recovery as evaluated by pain, use of walking aids and Harris hip scores were similar in both groups. Conclusions: PFNA significantly reduces the operative time, amount of blood loss and fluoroscopic imaging as compared to PFN. However PFNA offers no significant benefits over PFN in terms of post-operative functional recovery or complications

    Raman Scattering Study of Ba-doped C60 with t1g States

    Full text link
    Raman spectra are reported for Ba doped fullerides, BaxC60(x=3,4,and 6). The lowest frequency Hg modes split into five components for Ba4C60 and Ba6C60 even at room temperature, allowing us a quantitative analysis based on the electron-phonon couping theory. For the superconducting Ba4C60, the density of states at the Fermi energy was derived as 7 eV-1, while the total value of electron-phonon coupling \lambda was found to be 1.0, which is comparable to that of K3C60. The tangential Ag(2) mode, which is known as a sensitive probe for the degree of charge transfer on C60 molecule, shows a remarkable shift depending on the Ba concentration, being roughly consistent with the full charge transfer from Ba to C60. An effect of hybridization between Ba and C60 \pi orbitals is also discussed.Comment: 15 pages, 6 figures submitted to Phys. Rev. B (December 1,1998

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Utilizing Light-field Imaging Technology in Neurosurgery

    Get PDF
    Traditional still cameras can only focus on a single plane for each image while rendering everything outside of that plane out of focus. However, new light-field imaging technology makes it possible to adjust the focus plane after an image has already been captured. This technology allows the viewer to interactively explore an image with objects and anatomy at varying depths and clearly focus on any feature of interest by selecting that location during post-capture viewing. These images with adjustable focus can serve as valuable educational tools for neurosurgical residents. We explore the utility of light-field cameras and review their strengths and limitations compared to other conventional types of imaging. The strength of light-field images is the adjustable focus, as opposed to the fixed-focus of traditional photography and video. A light-field image also is interactive by nature, as it requires the viewer to select the plane of focus and helps with visualizing the three-dimensional anatomy of an image. Limitations include the relatively low resolution of light-field images compared to traditional photography and video. Although light-field imaging is still in its infancy, there are several potential uses for the technology to complement traditional still photography and videography in neurosurgical education

    Utilizing Light-field Imaging Technology in Neurosurgery

    Get PDF
    Traditional still cameras can only focus on a single plane for each image while rendering everything outside of that plane out of focus. However, new light-field imaging technology makes it possible to adjust the focus plane after an image has already been captured. This technology allows the viewer to interactively explore an image with objects and anatomy at varying depths and clearly focus on any feature of interest by selecting that location during post-capture viewing. These images with adjustable focus can serve as valuable educational tools for neurosurgical residents. We explore the utility of light-field cameras and review their strengths and limitations compared to other conventional types of imaging. The strength of light-field images is the adjustable focus, as opposed to the fixed-focus of traditional photography and video. A light-field image also is interactive by nature, as it requires the viewer to select the plane of focus and helps with visualizing the three-dimensional anatomy of an image. Limitations include the relatively low resolution of light-field images compared to traditional photography and video. Although light-field imaging is still in its infancy, there are several potential uses for the technology to complement traditional still photography and videography in neurosurgical education

    Scaling up community mobilisation through women's groups for maternal and neonatal health: experiences from rural Bangladesh

    Get PDF
    Background: Program coverage is likely to be an important determinant of the effectiveness of community interventions to reduce neonatal mortality. Rigorous examination and documentation of methods to scale-up interventions and measure coverage are scarce, however. To address this knowledge gap, this paper describes the process and measurement of scaling-up coverage of a community mobilisation intervention for maternal, child and neonatal health in rural Bangladesh and critiques this real-life experience in relation to available literature on scaling-up.Methods: Scale-up activities took place in nine unions in rural Bangladesh. Recruitment and training of those who deliver the intervention, communication and engagement with the community and other stakeholders and active dissemination of intervention activities are described. Process evaluation and population survey data are presented and used to measure coverage and the success of scale-up.Results: The intervention was scaled-up from 162 women's groups to 810, representing a five-fold increase in population coverage. The proportion of women of reproductive age and pregnant women who were engaged in the intervention increased from 9% and 3%, respectively, to 23% and 29%.Conclusions: Examination and documentation of how scaling-up was successfully initiated, led, managed and monitored in rural Bangladesh provide a deeper knowledge base and valuable lessons.Strong operational capabilities and institutional knowledge o
    • …
    corecore