research

Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields

Abstract

We present counting methods for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). One approach employs generating functions, another one uses a combinatorial method. They yield exact formulas and approximations with relative errors that essentially decrease exponentially in the input size.Comment: to appear in SIAM Journal on Discrete Mathematic

    Similar works

    Full text

    thumbnail-image

    Available Versions