9 research outputs found

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    Recognition of artificial visual field defects using the multifocal VEP

    No full text

    sensitivity of HMC anomaloscope

    No full text

    Intermittent ciliary block as a result of haemodialysis

    No full text

    Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12

    No full text
    Li7La3Zr2O12 (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li+/H+ cation exchange makes their processing even more difficult. Formulation of suitable polymer/ceramic hybrid solid state electrolytes could be a prosperous way to reach the future large scale production of solid state Li-ion batteries. In fact, solvent mediated and/or slurry based wet-processing of the LLZO, e.g., tape-casting, could result in irreversible Li-ion loss of the pristine material due to Li+/H+ cation exchange. The concomitant structural changes and loss in functionality in terms of Li-ion conductivity are the results of the above process. Therefore, in the present work a systematic study on the chemical stability and structural retention of Al-substituted LLZO in different solvents is reported. It was found that Li+/H+ exchange in LLZO occurs upon solvent immersion, and its magnitude is dependent on the availability of -OH functional groups of the solvent molecules. As a result, a larger degree of Li+/H+ exchange causes higher increase of the lattice parameter of the LLZO, determined by synchrotron diffraction analyses. The expansion of the cubic unit cell was ascertained, when Li+ was replaced by H+ in the host lattice, by ab initio computational studies. The application of the most common solvent as dispersion medium, i.e., high purity water, causes the most significant Li+/H+ exchange and, therefore, structural change, while acetonitrile was proven to be the best suitable solvent for wet postprocessing of LLZO. Finally, computational calculations suggested that the Li+/H+ exchange could result in diminished ionic, i.e., mixed Li+-H+, conductivity due to the insertion of protons with lower mobility than that of Li-ions

    Screening Precursor–Solvent Combinations for Li4Ti5O12 Energy Storage Material Using Flame Spray Pyrolysis

    No full text
    The development and industrial application of advanced lithium based energy-storage materials are directly related to the innovative production techniques and the usage of inexpensive precursor materials. Flame spray pyrolysis (FSP) is a promising technique that overcomes the challenges in the production processes such as scalability, process control, material versatility, and cost. In the present study, phase pure anode material Li4Ti5O12 (LTO) was designed using FSP via extensive systematic screening of lithium and titanium precursors dissolved in five different organic solvents. The effect of precursor and solvent parameters such as chemical reactivity, boiling point, and combustion enthalpy on the particle formation either via gas-to-particle (evaporation/nucleation/growth) or via droplet-to-particle (precipitation/incomplete evaporation) is discussed. The presence of carboxylic acid in the precursor solution resulted in pure (>95 mass %) and homogeneous LTO nanoparticles of size 4–9 nm, attributed to two reasons: (1) stabilization of water sensitive metal alkoxides precursor and (2) formation of volatile carboxylates from lithium nitrate evidenced by attenuated total reflection Fourier transform infrared spectroscopy and single droplet combustion experiments. In contrast, the absence of carboxylic acids resulted in larger inhomogeneous crystalline titanium dioxide (TiO2) particles with significant reduction of LTO content as low as ∼34 mass %. In-depth particle characterization was performed using X-ray diffraction with Rietveld refinement, thermogravimetric analysis coupled with differential scanning calorimetry and mass spectrometry, gas adsorption, and vibrational spectroscopy. High-resolution transmission electron microscopy of the LTO product revealed excellent quality of the particles obtained at high temperature. In addition, high rate capability and efficient charge reversibility of LTO nanoparticles demonstrate the vast potential of inexpensive gas-phase synthesis for energy-storage materials
    corecore