2,022 research outputs found
The connection between the peaks in velocity dispersion and star-forming clumps of turbulent galaxies
We present Keck/OSIRIS adaptive optics observations with 150-400 pc spatial
sampling of 7 turbulent, clumpy disc galaxies from the DYNAMO sample
(). DYNAMO galaxies have previously been shown to be well matched
in properties to main sequence galaxies at . Integral field
spectroscopy observations using adaptive optics are subject to a number of
systematics including a variable PSF and spatial sampling, which we account for
in our analysis. We present gas velocity dispersion maps corrected for these
effects, and confirm that DYNAMO galaxies do have high gas velocity dispersion
(\kms), even at high spatial sampling. We find statistically
significant structure in 6 out of 7 galaxies. The most common distance between
the peaks in velocity dispersion and emission line peaks is ~kpc, we
note this is very similar to the average size of a clump measured with HST
H maps. This could suggest that the peaks in velocity dispersion in
clumpy galaxies likely arise due to some interaction between the clump and the
surrounding ISM of the galaxy, though our observations cannot distinguish
between outflows, inflows or velocity shear. Observations covering a wider area
of the galaxies will be needed to confirm this result.Comment: Accepted for publication in MNRA
The Mass Assembly Histories of Galaxies of Various Morphologies in the GOODS Fields
We present an analysis of the growth of stellar mass with cosmic time
partitioned according to galaxy morphology. Using a well-defined catalog of
2150 galaxies based, in part, on archival data in the GOODS fields, we assign
morphological types in three broad classes (Ellipticals, Spirals,
Peculiar/Irregulars) to a limit of z_AB=22.5 and make the resulting catalog
publicly available. We combine redshift information, optical photometry from
the GOODS catalog and deep K-band imaging to assign stellar masses. We find
little evolution in the form of the galaxy stellar mass function from z~1 to
z=0, especially at the high mass end where our results are most robust.
Although the population of massive galaxies is relatively well established at
z~1, its morphological mix continues to change, with an increasing proportion
of early-type galaxies at later times. By constructing type-dependent stellar
mass functions, we show that in each of three redshift intervals, E/S0's
dominate the higher mass population, while spirals are favored at lower masses.
This transition occurs at a stellar mass of 2--3 times 10^{10} Msun at z~0.3
(similar to local studies) but there is evidence that the relevant mass scale
moves to higher mass at earlier epochs. Such evolution may represent the
morphological extension of the ``downsizing'' phenomenon, in which the most
massive galaxies stop forming stars first, with lower mass galaxies becoming
quiescent later. We infer that more massive galaxies evolve into spheroidal
systems at earlier times, and that this morphological transformation may only
be completed 1--2 Gyr after the galaxies emerge from their active star forming
phase. We discuss several lines of evidence suggesting that merging may play a
key role in generating this pattern of evolution.Comment: 24 pages, 1 table, 8 figures, accepted for publication in Ap
Color bimodality: Implications for galaxy evolution
We use a sample of 69726 galaxies from the SDSS to study the variation of the
bimodal color-magnitude (CM) distribution with environment. Dividing the galaxy
population by environment (Sigma_5) and luminosity (-23<M_r<-17), the u-r color
functions are modeled using double-Gaussian functions. This enables a
deconvolution of the CM distributions into two populations: red and blue
sequences. The changes with increasing environmental density can be separated
into two effects: a large increase in the fraction of galaxies in the red
distribution, and a small color shift in the CM relations of each distribution.
The average color shifts are 0.05+-0.01 and 0.11+-0.02 for the red and blue
distributions, respectively, over a factor of 100 in projected neighbor
density. The red fraction varies between about 0% and 70% for low-luminosity
galaxies and between about 50% and 90% for high-luminosity galaxies. This
difference is also shown by the variation of the luminosity functions with
environment. We demonstrate that the effects of environment and luminosity can
be unified. A combined quantity, Sigma_mod = Sigma_5/Mpc^{-2} + L_r/L_{-20.2},
predicts the fraction of red galaxies, which may be related to the probability
of transformation events. Our results are consistent with major interactions
(mergers and/or harassment) causing galaxies to transform from the blue to the
red distribution. We discuss this and other implications for galaxy evolution
from earlier results and model the effect of slow transformations on the color
functions.Comment: 14 pages, 8 figures, in AIP Conf. Proc., The New Cosmology, eds. R.
E. Allen et al. (aka. The Mitchell Symposium), see
http://proceedings.aip.org/proceedings/confproceed/743.jsp ; v2: replaced
Figure 5 which was incomplete in original submissio
Galaxy bimodality versus stellar mass and environment
We analyse a z<0.1 galaxy sample from the Sloan Digital Sky Survey focusing
on the variation of the galaxy colour bimodality with stellar mass and
projected neighbour density Sigma, and on measurements of the galaxy stellar
mass functions. The characteristic mass increases with environmental density
from about 10^10.6 Msun to 10^10.9 Msun (Kroupa IMF, H_0=70) for Sigma in the
range 0.1--10 per Mpc^2. The galaxy population naturally divides into a red and
blue sequence with the locus of the sequences in colour-mass and
colour-concentration index not varying strongly with environment. The fraction
of galaxies on the red sequence is determined in bins of 0.2 in log Sigma and
log mass (12 x 13 bins). The red fraction f_r generally increases continuously
in both Sigma and mass such that there is a unified relation: f_r =
F(Sigma,mass). Two simple functions are proposed which provide good fits to the
data. These data are compared with analogous quantities in semi-analytical
models based on the Millennium N-body simulation: the Bower et al. (2006) and
Croton et al. (2006) models that incorporate AGN feedback. Both models predict
a strong dependence of the red fraction on stellar mass and environment that is
qualitatively similar to the observations. However, a quantitative comparison
shows that the Bower et al. model is a significantly better match; this appears
to be due to the different treatment of feedback in central galaxies.Comment: 19 pages, 17 figures; accepted by MNRAS, minor change
The Star Formation History of the Hubble Sequence: Spatially Resolved Colour Distributions of Intermediate Redshift Galaxies in the Hubble Deep Field
We analyse the spatially resolved colours of distant galaxies of known
redshift in the Hubble Deep Field, using a new technique based on matching
resolved four-band internal colour data to the predictions of evolutionary
synthesis models. We quantify the relative age, dispersion in age, ongoing
star-formation rate, star-formation history, and dust content of these
galaxies. To demonstrate the potential of the method, we study the
near-complete sample of 32 I ~ 0.5 studied by
Bouwens et al (1997). The dispersion of the internal colours of a sample of
0.4<z<1 early-type field galaxies in the HDF indicates that ~40% [4/11] show
evidence of star formation which must have occurred within the past third of
their ages at the epoch of observation. For a sample of well-defined spirals,
we similarly exploit the dispersion in colour to analyse the relative histories
of bulge and disc stars, in order to resolve the current controversy regarding
the ages of galactic bulges. Dust and metallicity gradients are ruled out as
major contributors to the colour dispersions we observe in these systems. The
median ages of bulge stars are found to be signicantly older than those in
galactic discs, and exhibit markedly different star-formation histories. This
result is inconsistent with a secular growth of bulges from disc instabilities,
but consistent with gradual disc formation by accretion of gas onto bulges, as
predicted by hierarchical theories. We extend our technique in order to discuss
the star formation history of the entire Bouwens et al sample in the context of
earlier studies concerned with global star formation histories.Comment: 8 colour postscript figures plus LaTeX source; submitted to MNRAS.
Uses the mnras.sty LaTeX style fil
The History of Galaxies and Galaxy Number Counts
(Abridged) A simple quantitative model is presented for the history of
galaxies to explain galaxy number counts, redshift distributions and some other
related observations. We first infer that irregular galaxies and the disks of
spiral galaxies are young, probably formed at from a
simultaneous consideration of colours and gas content under a moderate
assumption on the star formation history. Assuming that elliptical galaxies and
bulges of spiral galaxies, both called spheroids in the discussion, had formed
early in the universe, the resulting scenario is that spiral galaxies formed as
intergalactic gas accreting onto pre-existing bulges mostly at ;
irregular galaxies as seen today formed by aggregation of clouds at . Taking the formation epochs thus estimated into account, we construct
a model for the history of galaxies employing a stellar population synthesis
model. We assume that the number of galaxies does not change except that some
of them (irregulars) were newly born, and use a morphology-dependent local
luminosity function to constrain the number of galaxies. The predictions of the
model are compared with the observation of galaxy number counts and redshift
distributions for the , and colour bands. It is shown that young
irregular galaxies cause the steep slope of the -band counts. The fraction
of irregular galaxies increases with decreasing brightness: at mag, they
contribute as much as spiral galaxies. Thus, ``the faint blue galaxy problem''
is solved by invoking young galaxies. This interpretation is corroborated by a
comparison of our prediction with the morphologically-classified galaxy counts
in the band.Comment: 25 pages, LaTeX (aaspp4), 24 PostScript figures. Submitted to ApJ in
February 199
Galaxy Morphology from NICMOS Parallel Imaging
We present high resolution NICMOS images of random fields obtained in
parallel to other HST observations. We present galaxy number counts reaching
H=24. The H-band galaxy counts show good agreement with the deepest I- and
K-band counts obtained from ground-based data. We present the distribution of
galaxies with morphological type to H<23. We find relatively fewer irregular
galaxies compared to an I-band sample from the Hubble Deep Field, which we
attribute to their blue color, rather than to morphological K-corrections. We
conclude that the irregulars are intrinsically faint blue galaxies at z<1.Comment: 13 pages, including 4 figures. Accepted for publication in ApJ
Letter
The Luminosity Function for L>L* Galaxies at z > 3
Through use of multiband (U, B, R, I) photometry we have isolated high
redshift (3.0<z<3.5) galaxy candidates in a survey of 1.27 deg^2 to R = 21.25
and a survey of 0.02 deg^2 to R = 23.5. Our pool of candidates constrains the
nature of the 3.0 < z < 3.5 luminosity function over the range L* < L < 100 L*,
if we grant a similar level of completeness to these data as for very faint
samples (to R = 25.5) selected in a similar fashion. Our constraints agree with
the high redshift sky density at R = 20.5 estimated from Yee et al.'s (1996)
serendipitous discovery of a bright, z = 2.7 galaxy, as well as the density at
R ~ 23 by Steidel et al. (1996b). We strongly rule out -- by more than two
orders of magnitude at M(R) = -25 -- the L > L* luminosity function for z = 3-5
galaxies obtained by a photometric redshift analysis of the Hubble Deep Field
(HDF) by Gwyn & Hartwick (1996). Our results at R ~ 23 are more consistent with
the photometric redshift analysis of the faint HDF galaxies by Sawicki & Yee
(1996), but our present upper limits at the brightest magnitudes (R < 21.5,
M(R) < -24) allow more generous volume densities of these super-L* galaxies.Comment: Accepted for publication in ApJ Letters; 14 pages Latex, including 3
figure
- …
