2,832 research outputs found

    Friedmann branes with variable tension

    Full text link
    We introduce brane-worlds with non-constant tension, strenghtening the analogy with fluid membranes, which exhibit a temperature-dependence according to the empirical law established by E\"otv\"os. This new degree of freedom allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We establish the covariant dynamics on a brane with variable tension in full generality, by considering asymmetrically embedded branes and allowing for non-standard model fields in the 5-dimensional space-time. Then we apply the formalism for a perfect fluid on a Friedmann brane, which is embedded in a 5-dimensional charged Vaidya-Anti de Sitter space-time.Comment: 12 pages, to appear in Phys. Rev.

    On the validity of the 5-dimensional Birkhoff theorem: The tale of an exceptional case

    Get PDF
    The 5-dimensional (5d) Birkhoff theorem gives the class of 5d vacuum space-times containing spatial hypersurfaces with cosmological symmetries. This theorem is violated by the 5d vacuum Gergely-Maartens (GM) space-time, which is not a representant of the above class, but contains the static Einstein brane as embedded hypersurface. We prove that the 5d Birkhoff theorem is still satisfied in a weaker sense: the GM space-time is related to the degenerated horizon metric of certain black-hole space-times of the allowed class. This result resembles the connection between the Bertotti-Robinson space-time and the horizon region of the extremal Reissner-Nordstrom space-time in general relativity.Comment: 13 pages; v2: title amended, to be published in Classical and Quantum Gravit

    Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction

    Get PDF
    The radiation reaction in compact spinning binaries on eccentric orbits due to the quadrupole-monopole interaction is studied. This contribution is of second post-Newtonian order. As result of the precession of spins the magnitude LL of the orbital angular momentum is not conserved. Therefore a proper characterization of the perturbed radial motion is provided by the energy EE and angular average Lˉ\bar{L}. As powerful computing tools, the generalized true and eccentric anomaly parametrizations are introduced. Then the secular losses in energy and magnitude of orbital angular momentum together with the secular evolution of the relative orientations of the orbital angular momentum and spins are found for eccentric orbits by use of the residue theorem. The circular orbit limit of the energy loss agrees with Poisson's earlier result.Comment: accepted for publication in Phys. Rev.

    Asymmetric Swiss-cheese brane-worlds

    Full text link
    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid however can proceed along four branches, two allowed to have positive energy density, one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions (b) a difference in the left and right bulk cosmological constants. While the behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is 10 times the lower limit. The degree of asymmetry allowed by present cosmological observations is however much less, pushing the upper limit to infinity.Comment: v2: considerably expanded, 19 pages, 8 figures, many new references. Pressure singularity censorship introduced, strict limits on the possible degree of asymmetry derived. v3: model independent analysis shows that the asymmetry bounds the brane tension from above. Limits on the maximal tension set. Version published in JCA

    Non-uniform Braneworld Stars: an Exact Solution

    Full text link
    The first exact interior solution to Einstein's field equations for a static and non-uniform braneworld star with local and non-local bulk terms is presented. It is shown that the bulk Weyl scalar U(r){\cal U}(r) is always negative inside the stellar distribution, in consequence it reduces both the effective density and the effective pressure. It is found that the anisotropy generated by bulk gravity effect has an acceptable physical behaviour inside the distribution. Using a Reissner-N\"{o}rdstrom-like exterior solution, the effects of bulk gravity on pressure and density are found through matching conditions.Comment: 22 pages, 3 figures, version to be published in International Journal of Modern Physics D (IJMPD

    Linear Einstein equations and Kerr-Schild maps

    Get PDF
    We prove that given a solution of the Einstein equations gabg_{ab} for the matter field TabT_{ab}, an autoparallel null vector field lal^{a} and a solution (lalc,Tac)(l_{a}l_{c}, \mathcal{T}_{ac}) of the linearized Einstein equation on the given background, the Kerr-Schild metric gac+λlalcg_{ac}+\lambda l_{a}l_{c} (λ\lambda arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor Tac+λTac+λ2l(aTc)blbT_{ac}+\lambda \mathcal{T}_{ac}+\lambda ^{2}l_{(a}\mathcal{T}_{c)b}l^{b}. The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed space-time due to G\"{u}rses and G\"{u}rsey.Comment: 9 pages, accepted by Class. Quant. Gra

    Gravitational radiation reaction in compact binary systems: Contribution of the magnetic dipole-magnetic dipole interaction

    Full text link
    We study the gravitational radiation reaction in compact binary systems composed of neutron stars with spin and huge magnetic dipole moments (magnetars). The magnetic dipole moments undergo a precessional motion about the respective spins. At sufficiently high values of the magnetic dipole moments, their interaction generates second post-Newtonian order contributions both to the equations of motion and to the gravitational radiation escaping the system. We parametrize the radial motion and average over a radial period in order to find the secular contributions to the energy and magnitude of the orbital angular momentum losses, in the generic case of \textit{eccentric} orbits. Similarly as for the spin-orbit, spin-spin, quadrupole-monopole interactions, here too we deduce the secular evolution of the relative orientations of the orbital angular momentum and spins. These equations, supplemented by the evolution equations for the angles characterizing the orientation of the dipole moments form a first order differential system, which is closed. The circular orbit limit of the energy loss agrees with Ioka and Taniguchi's earlier result

    Geometrodynamics in a spherically symmetric, static crossflow of null dust

    Full text link
    The spherically symmetric, static spacetime generated by a crossflow of non-interacting radiation streams, treated in the geometrical optics limit (null dust) is equivalent to an anisotropic fluid forming a radiation atmosphere of a star. This reference fluid provides a preferred / internal time, which is employed as a canonical coordinate. Among the advantages we encounter a new Hamiltonian constraint, which becomes linear in the momentum conjugate to the internal time (therefore yielding a functional Schr\"{o}dinger equation after quantization), and a strongly commuting algebra of the new constraints.Comment: Section on boundary behavior and fall-off conditions of canonical variables added. New references, 1 new figure, 12 pages. Version accepted in Phys.Rev.

    Gravitational dynamics in s+1+1 dimensions II. Hamiltonian theory

    Full text link
    We develop a Hamiltonian formalism of brane-world gravity, which singles out two preferred, mutually orthogonal directions. One is a unit twist-free field of spatial vectors with integral lines intersecting perpendicularly the brane. The other is a temporal vector field with respect to which we perform the Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The gravitational variables arise from the projections of the spatial metric and their canonically conjugated momenta as tensorial, vectorial and scalar quantities defined on the family of hypersurfaces containing the brane. They represent the gravitons, a gravi-photon and a gravi-scalar, respectively. From the action we derive the canonical evolution equations and the constraints for these gravitational degrees of freedom both on the brane and outside it. By integrating across the brane, the dynamics also generates the tensorial and scalar projection of the Lanczos equation. The vectorial projection of the Lanczos equation arises in a similar way from the diffeomorphism constraint. Both the graviton and the gravi-scalar are continuous across the brane, however the momentum of the gravi-vector has a jump, related to the energy transport (heat flow) on the brane.Comment: 13 page

    The geometry of the Barbour-Bertotti theories II. The three body problem

    Get PDF
    We present a geometric approach to the three-body problem in the non-relativistic context of the Barbour-Bertotti theories. The Riemannian metric characterizing the dynamics is analyzed in detail in terms of the relative separations. Consequences of a conformal symmetry are exploited and the sectional curvatures of geometrically preferred surfaces are computed. The geodesic motions are integrated. Line configurations, which lead to curvature singularities for N≠3N\neq 3, are investigated. None of the independent scalars formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit
    • 

    corecore