4,640 research outputs found

    Parsec Scale Properties of Markarian 501

    Full text link
    We present the results of a high angular resolution study of the BL Lac object Markarian 501 in the radio band. We consider data taken at 14 different epochs, ranging between 1.6 GHz and 22 GHz in frequency, and including new Space VLBI observations obtained on 2001 March 5 and 6 at 1.6 and 5 GHz. We study the kinematics of the parsec-scale jet and estimate its bulk velocity and orientation with respect to the line of sight. Limb brightened structure in the jet is clearly visible in our data and we discuss its possible origin in terms of velocity gradients in the jet. Quasi-simultaneous multi-wavelength observations allow us to map the spectral index distribution and to compare it to the jet morphology. Finally, we estimate the physical parameters of the parsec-scale jet.Comment: accepted for publication in ApJ; 24 pages with 17 figures (fig. 1 and fig. 2 available only as .jpg files

    The Effect of Propofol on the Canine Sphincter of Oddi

    Get PDF
    To assess the effect of propofol on the canine sphincter of Oddi (SO), sphincter of Oddi manometry (SOM) was performed in fasting dogs which had undergone cholecystectomy and placement of modified Thomas duodenal cannulae. Using two water-perfused, single-lumen manometric catheters, SO and duodenal pressures were measured simultaneously. Baseline SO activity was recorded for at least one complete interdigestive cycle followed by bolus injections of propofol (Diprivan ®) (N = 31) from 0.1 to 4.0 mg/kg during Phase I of the Migrating Motor Complex (MMC)

    Shear-free, Irrotational, Geodesic, Anisotropic Fluid Cosmologies

    Get PDF
    General relativistic anisotropic fluid models whose fluid flow lines form a shear-free, irrotational, geodesic timelike congruence are examined. These models are of Petrov type D, and are assumed to have zero heat flux and an anisotropic stress tensor that possesses two distinct non-zero eigenvalues. Some general results concerning the form of the metric and the stress-tensor for these models are established. Furthermore, if the energy density and the isotropic pressure, as measured by a comoving observer, satisfy an equation of state of the form p=p(μ)p = p(\mu), with dpdμ13\frac{dp}{d\mu} \neq -\frac{1}{3}, then these spacetimes admit a foliation by spacelike hypersurfaces of constant Ricci scalar. In addition, models for which both the energy density and the anisotropic pressures only depend on time are investigated; both spatially homogeneous and spatially inhomogeneous models are found. A classification of these models is undertaken. Also, a particular class of anisotropic fluid models which are simple generalizations of the homogeneous isotropic cosmological models is studied.Comment: 13 pages LaTe

    The Covariant Approach to LRS Perfect Fluid Spacetime Geometries

    Full text link
    The dynamics of perfect fluid spacetime geometries which exhibit {\em Local Rotational Symmetry} (LRS) are reformulated in the language of a 1+31+\,3 "threading" decomposition of the spacetime manifold, where covariant fluid and curvature variables are used. This approach presents a neat alternative to the orthonormal frame formalism. The dynamical equations reduce to a set of differential relations between purely scalar quantities. The consistency conditions are worked out in a transparent way. We discuss their various subcases in detail and focus in particular on models with higher symmetries within the class of expanding spatially inhomogeneous LRS models, via a consideration of functional dependencies between the dynamical variables.Comment: 25 pages, uuencoded/compressed postscript fil

    Multiwavelength Observations of the Second Largest Known FR II Radio Galaxy, NVSS 2146+82

    Get PDF
    We present multi-frequency VLA, multicolor CCD imaging, optical spectroscopy, and ROSAT HRI observations of the giant FR II radio galaxy NVSS 2146+82. This galaxy, which was discovered by the NRAO VLA Sky Survey (NVSS), has an angular extent of nearly 20' from lobe to lobe. The radio structure is normal for an FR II source except for its large size and regions in the lobes with unusually flat radio spectra. Our spectroscopy indicates that the optical counterpart of the radio core is at a redshift of z=0.145, so the linear size of the radio structure is ~4 h_50^-1 Mpc. This object is therefore the second largest FR II known (3C 236 is ~6 h_50^-1 Mpc). Optical imaging of the field surrounding the host galaxy reveals an excess number of candidate galaxy cluster members above the number typically found in the field surrounding a giant radio galaxy. WIYN HYDRA spectra of a sample of the candidate cluster members reveal that six share the same redshift as NVSS 2146+82, indicating the presence of at least a ``rich group'' containing the FR II host galaxy. ROSAT HRI observations of NVSS 2146+82 place upper limits on the X-ray flux of 1.33 x 10^-13 ergs cm^-2 s^-1 for any hot IGM and 3.52 x 10^-14 ergs cm^-2 s^-1 for an X-ray AGN, thereby limiting any X-ray emission at the distance of the radio galaxy to that typical of a poor group or weak AGN. Several other giant radio galaxies have been found in regions with overdensities of nearby galaxies, and a separate study has shown that groups containing FR IIs are underluminous in X-rays compared to groups without radio sources. We speculate that the presence of the host galaxy in an optically rich group of galaxies that is underluminous in X-rays may be related to the giant radio galaxy phenomenon.Comment: 46 pages, 15 figures, AASTeX aaspp4 style, accepted for publication in A

    The galactic magnetic field in the quasar 3C216

    Full text link
    Multifrequency polarimetric observations made with the Very Long Baseline Array of the quasar 3C216 reveal the presence of Faraday rotation measures (RMs) in excess of 2000 rad/m**2 in the source rest frame, in the arc of emission located at ~ 140 mas from the core. Rotation measures in the range -300 - +300 rad/m**2 are detected in the inner 5 mas (~30 parsecs). while the rotation measures near the core can be explained as due to a magnetic field in the narrow line region, we favor the interpretation for the high RM in the arc as due to a ``local'' Faraday screen, produced in a shock where the jet is deflected by the interstellar medium of the host galaxy. Our results indicate that a galacit magnetic field of the order of 50 microGauss on a scale greater than 100 pc must be present in the galactic medium.Comment: 23 pages, 3 tables, 11 figures. To appear on The Astronomical Journal, November 1999 Issu

    General Relativistic 1+3 Orthonormal Frame Approach Revisited

    Full text link
    The equations of the 1+3 orthonormal frame approach are explicitly presented and discussed. Natural choices of local coordinates are mentioned. A dimensionless formulation is subsequently given. It is demonstrated how one can obtain a number of interesting problems by specializing the general equations. In particular, equation systems for ``silent'' dust cosmological models also containing magnetic Maxwell fields, locally rotationally symmetric spacetime geometries and spatially homogeneous cosmological models are presented. We show that while the 3-Cotton--York tensor is zero for Szekeres dust models, it is nonzero for a generic representative within the ``silent'' class.Comment: 41 pages, uufiles encoded postscript file, submitted to Phys. Rev.
    corecore