1,253 research outputs found

    An exactly solvable toy model that mimics the mode coupling theory of supercooled liquid and glass transition

    Full text link
    A toy model is proposed which incorporates the reversible mode coupling mechanism responsible for ergodic-nonergodic transition with trivial Hamiltonian in the mode coupling theory (MCT) of structural glass transition. The model can be analyzed without relying on uncontrolled approximations inevitable in the current MCT. The strength of hopping processes can be easily tuned and the ideal glass transition is reproduced only in a certain range of the strength. On the basis of the analyses of our model we discuss about a sharp ergodic-nonergodic transition and its smearing out by "hopping".Comment: 5 pages, 2 ps-figures, inappropriate terms replace

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition

    Full text link
    The formal structure of glass singularities in the mode-coupling theory (MCT) of supercooled liquids dynamics is closely related to that appearing in the analysis of heterogeneous bootstrap percolation on Bethe lattices, random graphs and complex networks. Starting from this observation one can build up microscopic on lattice realizations of schematic MCT based on cooperative facilitated spin mixtures. I discuss a microscopic implementation of the F13 schematic model including multiple glassy states and the glass-glass transition. Results suggest that our approach is flexible enough to bridge alternative theoretical descriptions of glassy matter based on the notions of quenched disorder and dynamic facilitation.Comment: 4 pages, 2 figure

    Self-Organized Criticality Below The Glass Transition

    Full text link
    We obtain evidence that the dynamics of glassy systems below the glass transition is characterized by self-organized criticality. Using molecular dynamics simulations of a model glass-former we identify clusters of cooperatively jumping particles. We find string-like clusters whose size is power-law distributed not only close to T_c but for ALL temperatures below T_c, indicating self-organized criticality which we interpret as a freezing in of critical behavior.Comment: 4 pages, 3 figure

    Critical Decay at Higher-Order Glass-Transition Singularities

    Full text link
    Within the mode-coupling theory for the evolution of structural relaxation in glass-forming systems, it is shown that the correlation functions for density fluctuations for states at A_3- and A_4-glass-transition singularities can be presented as an asymptotic series in increasing inverse powers of the logarithm of the time t: ϕ(t)−f∝∑igi(x)\phi(t)-f\propto \sum_i g_i(x), where gn(x)=pn(ln⁥x)/xng_n(x)=p_n(\ln x)/x^n with p_n denoting some polynomial and x=ln (t/t_0). The results are demonstrated for schematic models describing the system by solely one or two correlators and also for a colloid model with a square-well-interaction potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted

    Vibrational origin of the fast relaxation processes in molecular glass-formers

    Get PDF
    We study the interaction of the relaxation processes with the density fluctuations by molecular dynamics simulation of a flexible molecule model for o-terphenyl (oTP) in the liquid and supercooled phases. We find evidence, besides the structural relaxation, of a secondary vibrational relaxation whose characteristic time, few ps, is slightly temperature dependent. This i) confirms the result by Monaco et al. [Phys. Rev, E 62, 7595 (2000)] of the vibrational nature of the fast relaxation observed in Brillouin Light Scattering (BLS) experiments in oTP; and ii) poses a caveat on the interpretation of the BLS spectra of molecular systems in terms of a purely center of mass dynamics.Comment: RevTeX, 5 pages, 4 eps figure

    Frustrated spin-12\frac{1}{2} Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1J_{1}--J2J_{2}--J1⊄J_{1}^{\perp} model

    Full text link
    The zero-temperature phase diagram of the spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1⊄J_{1}^{\perp} model on an AAAA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1>0J_{1}>0 and J2≡ÎșJ1>0J_{2} \equiv \kappa J_{1}>0, respectively, are included in each layer. The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1⊄≥ΎJ1J_{1}^{\perp} \equiv \delta J_{1}. The magnetic order parameter MM (viz., the sublattice magnetization) is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N\'{e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when ÎŽ0\delta 0) to one another. Calculations are performed at nnth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked cluster theorem and the Hellmann-Feynman theorem, with n≀10n \leq 10. The sole approximation made is to extrapolate such sequences of nnth-order results for MM to the exact limit, n→∞n \to \infty. By thus locating the points where MM vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the Îș\kappa--ÎŽ\delta half-plane with Îș>0\kappa > 0. In particular, we provide the accurate estimate, (Îș≈0.547,ή≈−0.45\kappa \approx 0.547,\delta \approx -0.45), for the position of the quantum triple point (QTP) in the region ÎŽ<0\delta < 0. We also show that there is no counterpart of such a QTP in the region ÎŽ>0\delta > 0, where the two quasiclassical phase boundaries show instead an ``avoided crossing'' behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected

    Numerical Investigation of Glassy Dynamics in Low Density Systems

    Full text link
    Vitrification in colloidal systems typically occurs at high densities driven by sharply varying, short-ranged interactions. The possibility of glassy behavior arising from smoothly varying, long-ranged particle interactions has received relatively little attention. Here we investigate the behavior of screened charged particles, and explicitly demonstrate that these systems exhibit glassy properties in the regime of low temperature and low density. Properties close to this low density (Wigner) glass transition share many features with their hard-sphere counterparts, but differ in quantitative aspects that may be accounted for via microscopic theoretical considerations.Comment: 4 pages, 4 figures, revised versio

    Inhomogeneous Mode-Coupling Theory and Growing Dynamic Length in Supercooled Liquids

    Full text link
    We extend Mode-Coupling Theory (MCT) to inhomogeneous situations, relevant for supercooled liquid in pores, close to a surface, or in an external field. We compute the response of the dynamical structure factor to a static inhomogeneous external potential and provide the first direct evidence that the standard formulation of MCT is associated with a diverging length scale. We find in particular that the so called ``cages'' are in fact extended objects. Although close to the transition the dynamic length grows as |T-T_c|^-1/4 in _both_ the beta and alpha regimes, our results suggest that the fractal dimension of correlated clusters is larger in the alpha regime. We also derive inhomogeneous MCT equations valid to second order in gradients.Comment: 4 page
    • 

    corecore