20 research outputs found

    Insights into Planet Formation from Debris Disks

    Get PDF

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Dynamic receptor superstructures at the plasma membrane

    No full text

    New trends in studying structure and function of biological membranes

    No full text
    Thirty years ago Singer and Nicolson constructed the “fluid mosaic model” of the membrane, which described the structural and functional characteristics of the plasma membrane of non-polarized cells like circulating blood lymphocytes as a fluid lipid phase accommodating proteins with a relatively free mobility. It is a rare phenomenon in biology that such a model could survive 30 years and even today it has a high degree of validity. However, in the light of new data it demands some modifications. In this minireview we present a new concept, which revives the SN model, by shifting the emphasis from fluidity to mosaicism, i.e. to lipid microdomains and rafts. A concise summary of data and key methods is given, proving the existence of non-random co-distribution patterns of different receptor kinds in the microdomain system of the plasma membrane. Furthermore, we present evidence that proteins are not only accommodated by the lipid phase, but they are integral structural elements of it. Novel suggestions to the SN model help to develop a modernized version of the old paradigm in the light of new data
    corecore