954 research outputs found

    Mercury in the environment

    Get PDF
    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food

    F100(3) parallel compressor computer code and user's manual

    Get PDF
    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model

    Nanosecond electro-optical switching with a repetition rate above 20MHz

    Full text link
    We describe an electro-optical switch based on a commercial electro-optic modulator (modified for high-speed operation) and a 340V pulser having a rise time of 2.2ns (at 250V). It can produce arbitrary pulse patterns with an average repetition rate beyond 20MHz. It uses a grounded-grid triode driven by transmitting power transistors. We discuss variations that enable analog operation, use the step-recovery effect in bipolar transistors, or offer other combinations of output voltage, size, and cost.Comment: 3 pages, 3 figures. Minor change

    Covering Pairs in Directed Acyclic Graphs

    Full text link
    The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths "covering" all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem

    A Missional Call to Faith Community Church to Engage in the Ministry of Christian Hospitality

    Get PDF
    This doctoral project focuses on mobilizing Faith Community Church of Elko New Market, Minnesota to become more effective in the ministry of evangelism and outreach through the strategic practice of Christian hospitality with sensitivity to its suburban context. Faith Community Church was planted in this city six years ago with the purpose of reaching people with the gospel. In the midst of this community context, the church has had limited evangelistic success and needs to reimagine how it engages others. Part One will examine the suburban context of Faith Community Church and seek to analyze the issues, concerns, and needs of the surrounding community. The vision and values of the church itself will also be provided, with specific attention directed toward the church’s history of evangelism and outreach efforts. The paper will then explore why change is needed in how it connects with others in the surrounding community. Part Two will engage the relevant biblical and theological resources which examine the missional character of God, and the call of the church to incarnate Christ as a model for evangelism. It will establish a scriptural, theological, and historical foundation for how Christian hospitality is a unique expression of God’s mission to the world. This will also be set within the framework of Wesleyan soteriology and Christian and Missionary Alliance ecclesiology. Part Three will focus on creating a pilot project that is supported by the theological data. It will establish at least five hospitality groups within the church that will provide helpful training and dialogue on how Christian hospitality can be implemented, and it will call participants to incarnate the Gospel organically in their own social networks, with emphasis on table fellowship. Careful consideration will be given to the timeline, leadership development, resources, personnel, and assessment of this project. Theological Mentor: Kurt Fredrickson, Ph

    Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm and the Network Simplex Algorithm

    Get PDF
    The minimum-cost flow (MCF) problem is a fundamental optimization problem with many applications and seems to be well understood. Over the last half century many algorithms have been developed to solve the MCF problem and these algorithms have varying worst-case bounds on their running time. However, these worst-case bounds are not always a good indication of the algorithms' performance in practice. The Network Simplex (NS) algorithm needs an exponential number of iterations for some instances, but it is considered the best algorithm in practice and performs best in experimental studies. On the other hand, the Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly polynomial, but performs badly in experimental studies. To explain these differences in performance in practice we apply the framework of smoothed analysis. We show an upper bound of O(mn2log(n)log(ϕ))O(mn^2\log(n)\log(\phi)) for the number of iterations of the MMCC algorithm. Here nn is the number of nodes, mm is the number of edges, and ϕ\phi is a parameter limiting the degree to which the edge costs are perturbed. We also show a lower bound of Ω(mlog(ϕ))\Omega(m\log(\phi)) for the number of iterations of the MMCC algorithm, which can be strengthened to Ω(mn)\Omega(mn) when ϕ=Θ(n2)\phi=\Theta(n^2). For the number of iterations of the NS algorithm we show a smoothed lower bound of Ω(mmin{n,ϕ}ϕ)\Omega(m \cdot \min \{ n, \phi \} \cdot \phi).Comment: Extended abstract to appear in the proceedings of COCOON 201

    On strongly chordal graphs that are not leaf powers

    Full text link
    A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V and a threshold k such that uv is an edge if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. This is in part due to the fact that few graphs are known to not be leaf powers, as such graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf powers could be characterized by strong chordality and a finite set of forbidden subgraphs. In this paper, we provide a negative answer to this question, by exhibiting an infinite family \G of (minimal) strongly chordal graphs that are not leaf powers. During the process, we establish a connection between leaf powers, alternating cycles and quartet compatibility. We also show that deciding if a chordal graph is \G-free is NP-complete, which may provide insight on the complexity of the leaf power recognition problem
    corecore