66 research outputs found

    Computing Branching Distances Using Quantitative Games

    Full text link
    We lay out a general method for computing branching distances between labeled transition systems. We translate the quantitative games used for defining these distances to other, path-building games which are amenable to methods from the theory of quantitative games. We then show for all common types of branching distances how the resulting path-building games can be solved. In the end, we achieve a method which can be used to compute all branching distances in the linear-time--branching-time spectrum

    Theory of relations

    No full text
    The first part of this book concerns the present state of the theory of chains (= total or linear orderings), in connection with some refinements of Ramsey's theorem, due to Galvin and Nash-Williams. This leads to the fundamental Laver's embeddability theorem for scattered chains, using Nash-Williams' better quasi-orderings, barriers and forerunning.The second part (chapters 9 to 12) extends to general relations the main notions and results from order-type theory. An important connection appears with permutation theory (Cameron, Pouzet, Livingstone and Wagner) and with logics (existence crite

    Linear vs. polynomial constraints in database query languages

    No full text

    Extensions completes d'une theorie forcing complete

    No full text

    Sherali-Adams Relaxations and Indistinguishability in Counting Logics

    Get PDF
    Two graphs with adjacency matrices A\mathbf{A} and B\mathbf{B} are isomorphic if there exists a permutation matrix P\mathbf{P} for which the identity PTAP=B\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B} holds. Multiplying through by P\mathbf{P} and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to Ω(n)\Omega(n) levels, where nn is the number of vertices in the graph

    Forcing Formulas in Fraïssé Structures and Classes

    No full text
    corecore