524 research outputs found
Newly Discovered RR Lyrae Stars in the SDSSXPanXSTARRS1XCatalina Footprint
We present the detection of 6,371 RR Lyrae (RRL) stars distributed across
~14,000 deg^2 of the sky from the combined data of the Sloan Digital Sky Survey
(SDSS), the Panoramic Survey Telescope and Rapid Response System 1 (PS1), and
the second photometric catalogue from the Catalina Survey (CSDR2), out of
these, ~2,021 RRL stars (~572 RRab and 1,449 RRc) are new discoveries. The RRL
stars have heliocentric distances in the 4--28 kpc distance range. RRL-like
color cuts from the SDSS and variability cuts from the PS1 are used to cull our
candidate list. We then use the CSDR2 multi-epoch data to refine our sample.
Periods were measured using the Analysis of Variance technique while the
classification process is performed with the Template Fitting Method in
addition to the visual inspection of the light curves. A cross-match of our RRL
star discoveries with previous published catalogs of RRL stars yield
completeness levels of ~50% for both RRab and RRc stars, and an efficiency of
~99% and ~87% for RRab and RRc stars, respectively. We show that our method for
selecting RRL stars allows us to recover halo structures. The full lists of all
the RRL stars are made publicly available.Comment: 14 pages, 11 figures. Accepted 2014 March 30. Received 2014 March 12;
in original form 2013 November 2
Four new T dwarfs identified in PanSTARRS 1 commissioning data
A complete well-defined sample of ultracool dwarfs is one of the key science
programs of the Pan-STARRS 1 optical survey telescope (PS1). Here we combine
PS1 commissioning data with 2MASS to conduct a proper motion search
(0.1--2.0\arcsec/yr) for nearby T dwarfs, using optical+near-IR colors to
select objects for spectroscopic followup. The addition of sensitive far-red
optical imaging from PS1 enables discovery of nearby ultracool dwarfs that
cannot be identified from 2MASS data alone. We have searched 3700 sq. deg. of
PS1 y-band (0.95--1.03 um) data to y19.5 mag (AB) and J16.5
mag (Vega) and discovered four previously unknown bright T dwarfs. Three of the
objects (with spectral types T1.5, T2 and T3.5) have photometric distances
within 25 pc and were missed by previous 2MASS searches due to more restrictive
color selection criteria. The fourth object (spectral type T4.5) is more
distant than 25 pc and is only a single-band detection in 2MASS. We also
examine the potential for completing the census of nearby ultracool objects
with the PS1 3 survey.Comment: 25 pages, 8 figures, 5 table, AJ accepted, updated to comply with
Pan-STARRS1 naming conventio
The fastest unbound star in our Galaxy ejected by a thermonuclear supernova
Hypervelocity stars (HVS) travel with velocities so high, that they exceed
the escape velocity of the Galaxy. Several acceleration mechanisms have been
discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we
present a spectroscopic and kinematic analysis of US\,708. Travelling with a
velocity of , it is the fastest unbound star in our
Galaxy. In reconstructing its trajectory, the Galactic center becomes very
unlikely as an origin, which is hardly consistent with the most favored
ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be
a fast rotator. According to our binary evolution model it was spun-up by tidal
interaction in a close binary and is likely to be the ejected donor remnant of
a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material
First Results from Pan-STARRS1: Faint, High Proper Motion White Dwarfs in the Medium-Deep Fields
The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands
(Pan-STARRS1 gps, rps, ips, zps, and yps) on twelve "Medium Deep Fields", each
of which spans a 3.3 degree circle. For the period between Apr 2009 and Apr
2011 these fields were observed 50-200 times. Using a reduced proper motion
diagram, we have extracted a list of 47 white dwarf (WD) candidates whose
Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6-sigma level,
with a typical 1-sigma proper motion uncertainty of 10 mas/yr. We also used
astrometry from SDSS (when available) and USNO-B to assess our proper motion
fits. None of the WD candidates exhibits evidence of statistically significant
parallaxes, with a typical 1-sigma uncertainty of 8 mas. Twelve of these
candidates are known WDs, including the high proper motion (1.7"/yr) WD LHS
291. We confirm three more objects as WDs through optical spectroscopy. Based
on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170
K Teff 5000 K and cooling ages <9 Gyr. We classify these objects as likely
thick disk WDs based on their kinematics. Our current sample represents only a
small fraction of the Pan-STARRS1 data. With continued coverage from the Medium
Deep Field Survey and the 3pi survey, Pan-STARRS1 should find many more high
proper motion WDs that are part of the old thick disk and halo.Comment: 33 pages, 8 figures, submitted to Ap
Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104
We report the discovery and multi-wavelength data analysis of the peculiar
optical transient, ATLAS17aeu. This transient was identified in the skymap of
the LIGO gravitational wave event GW170104 by our ATLAS and Pan-STARRS
coverage. ATLAS17aeu was discovered 23.1hrs after GW170104 and rapidly faded
over the next 3 nights, with a spectrum revealing a blue featureless continuum.
The transient was also detected as a fading x-ray source by Swift and in the
radio at 6 and 15 GHz. A gamma ray burst GRB170105A was detected by 3
satellites 19.04hrs after GW170104 and 4.10hrs before our first optical
detection. We analyse the multi-wavelength fluxes in the context of the known
GRB population and discuss the observed sky rates of GRBs and their afterglows.
We find it statistically likely that ATLAS17aeu is an afterglow associated with
GRB170105A, with a chance coincidence ruled out at the 99\% confidence or
2.6. A long, soft GRB within a redshift range of would be consistent with all the observed multi-wavelength data. The
Poisson probability of a chance occurrence of GW170104 and ATLAS17aeu is
. This is the probability of a chance coincidence in 2D sky location
and in time. These observations indicate that ATLAS17aeu is plausibly a normal
GRB afterglow at significantly higher redshift than the distance constraint for
GW170104 and therefore a chance coincidence. However if a redshift of the faint
host were to place it within the GW170104 distance range, then physical
association with GW170104 should be considered.Comment: 16 pages, 6 figures, accepted to Ap
- …
