367 research outputs found

    Multisensory integration induces body ownership of a handtool, but not any handtool

    Get PDF
    Bodily boundaries are computed by integrating multisensory bodily signals and can be experimentally manipulated using bodily illusions. Research on tool use demonstrates that tools alter body representations motorically to account for changes in a user's action repertoire. The present experiment sought to unify perceptual and motoric accounts of tool embodiment using a modified Rubber Hand Illusion (RHI) that also addressed the skill and practice aspects of the tool use literature. In Experiment 1, synchronous multisensory stimulation induced perceptual embodiment of a tool, chopsticks. The embodiment of chopsticks was stronger for more skilled participants, and if the illusion was preceded by tool use. In Experiment 2, the illusion was not elicited with a different type of tool, a teacup, showing that not all objects can be incorporated. This experiment helps to clarify the role of perceptual and motoric embodiment and suggests future avenues for research into tools embodiment using this method

    An active feedback recovery technique from disruption events induced by m=2 n=1 tearing modes in ohmically heated tokamak plasmas

    Full text link
    We present experimental results of magnetic feedback control on the m=2, n=1 tearing mode in RFX-mod operated as a circular ohmically heated tokamak. The feedback suppression of the non-resonant m=2, n=1 Resistive Wall Mode (RWM) in q(a)<2 plasmas is a well-established result of RFX-mod. The control of the tearing counterpart, which develops in q(a)>2 equilibrium, is instead a more difficult issue. In fact, the disruption induced by a growing amplitude m=2, n=1 tearing mode can be prevented by feedback only when the resonant surface q=2 is close to the plasma edge, namely 2<q(a)<2.5, and the electron density does not exceed approximately half of the Greenwald limit. A combined technique of tearing mode and q(a) control has been therefore developed to recover the discharge from the most critical conditions: the potentially disruptive tearing mode is converted into the relatively benign RWM by suddenly decreasing q(a) below 2. The experiments demonstrate the concept with 100% of successful cases. The q(a) control has been performed through the plasma current, given the capability of the toroidal loop-voltage power supply of RFX-mod. We also propose a path for controlling q(a) by acting on the plasma shape, which could be applied to medium size elongated tokamaks

    Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads

    Get PDF
    Peptide nucleic acids (PNAs) are a class of artificial oligonucleotide mimics that have garnered much attention as precision biotherapeutics for their efficient hybridization properties and their exceptional biological and chemical stability. However, the poor cellular uptake of PNA is a limiting factor to its more extensive use in biomedicine; encapsulation in nanoparticle carriers has therefore emerged as a strategy for internalization and delivery of PNA in cells. In this study, we demonstrate that PNA can be readily loaded into porous silicon nanoparticles (pSiNPs) following a simple salt-based trapping procedure thus far employed only for negatively charged synthetic oligonucleotides. We show that the ease and versatility of PNA chemistry also allows for producing PNAs with different net charge, from positive to negative, and that the use of differently charged PNAs enables optimization of loading into pSiNPs. Differently charged PNA payloads determine different release kinetics and allow modulation of the temporal profile of the delivery process. In vitro silencing of a set of specific microRNAs using a pSiNP-PNA delivery platform demonstrates the potential for biomedical applications

    Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNA molecules acting as gene regulators by repressing translation or by inducing degradation of the target RNA transcripts. Altered expression of miRNAs may be involved in the pathogenesis of many severe human diseases, opening new avenues in the field of therapeutic strategies, i.e., miRNA targeting or miRNA mimicking. In this context, the efficient and non-toxic delivery of premiRNA and antimiRNA molecules might be of great interest. The aim of the present paper is to determine whether an argininocalix[4]arene is able to efficiently deliver miRNA, premiRNA, and antimiRNA molecules to target cells, preserving their biological activity. This study points out that (1) the toxicity of argininocalix[4]arene 1 is low, and it can be proposed for long-term treatment of target cells, being that this feature is a pre-requisite for the development of therapeutic protocols; (2) the delivery of premiRNA and antimiRNA molecules is efficient, being higher when compared with reference gold standards available; and (3) the biological activity of the premiRNAs and antimiRNAs is maintained. This was demonstrated using the argininocalix[4]arene 1 in miRNA therapeutic approaches performed on three well-described experimental model systems: (1) the induction of apoptosis by antimiR-221 in glioma U251 cells; (2) the induction of apoptosis by premiR-124 in U251 cells; and (3) the inhibition of pro-inflammatory IL-8 and IL-6 genes in cystic fibrosis IB3-1 cells. Our results demonstrate that the argininocalix[4]arene 1 should be considered a very useful delivery system for efficient transfer to target cells of both premiRNA and antimiRNA molecules, preserving their biological activity

    Emergency Surgery in the Elderly: Could Laparoscopy Be Useful in Frailty? A Single-Center Prospective 2-Year Follow-Up in 120 Consecutive Patients

    Get PDF
    Background: the general population is aging across the world. Therefore, even surgical interventions in the elderly—in particular those involving emergency surgical admissions—are becoming more frequent. The elderly population is often frail (in multiple physiological systems, this is often defined as age-related cumulative decline). This study involved a 2-year follow-up evaluation of frail elderly patients treated with urgent surgical intervention at Santa Maria Regina della Misericordia Hospital, General Surgery Department, in Adria (Italy). Method: a prospective, single-center, 2-year follow-up study of 120 patients &gt;65 years old, treated at our department for surgical abdominal emergencies. We considered co-morbidities (ASA—American Society of Anesthesiologists Physical Status Classification System—score), type of surgery (laparoscopy, laparotomy or converted), frailty score, mortality, and complications at 30 days and at 2 years. Conclusions: 70 (58.4%) patients had laparoscopy, 49 (40.8) had laparotomy, and in 1 (0.8%) case, surgery was converted from laparoscopy to laparotomy. Mortality strictly depends on the type of surgery (laparotomy vs. laparoscopy), complications during recovery, and a lower Fried frailty criteria score, on average. The long-term follow-up can be a useful tool to highlight a safer surgical approach, such as laparoscopy, in frail elderly patients. We consider the laparoscopic approach feasible in emergency situations, with similar or better outcomes than laparotomy, especially in frail elderly patients

    Corilagin Induces High Levels of Apoptosis in the Temozolomide-Resistant T98G Glioma Cell Line

    Get PDF
    Glioblastoma multiforme (GBM), a malignant tumor of the central nervous system, has a high mortality rate; no curativetreatment is presently available and the most commonly used chemiotherapeutic drug, the alkylating agent temozolomide (TMZ), is only able to increase life expectancy and is often associated with drugresistance. Therefore, an urgent need does exist for novel drugs aimed at treating gliomas. In the present study we obtained three major results using corliagin: (a) demonstrate that it inhibits the growth of U251 glioma cells through activation of the apoptotic pathway; (b) demonstrate that it is also active on temozolomideresistant T98G glioma cells; (c) demonstrate that when used in combination with temozolomide on T98G glioma cells a higher level of pro-apototic and antiproliferative effects are observed. Our study indicates that corilagin should be investigated in more detail in order to determine if it can be developed as a potential therapeutic agent. In addition, our results suggest that corilagin could be used in combination with low dosages of other standard anticancer chemotherapeutic drugs against gliomas (such as temozolomide) with the aim of obtaining enhanced anticancer effects

    Diagnóstico participativo da drenagem urbana de Florianópolis - Mapa de problemas de drenagem

    Get PDF
    Mapa e shape file contendo os Problemas de drenagem urbana identificados no diagnóstico participativo da drenagem urbana de Florianópolis realizado pela DREMAP (Comissão de drenagem) com informações de 2019Em 2019 foi realizado pela Comissão Especial DREMAP (Drenagem e Manejo de Águas Pluviais de Florianópolis) um diagnóstico participativo da drenagem urbana do município. Os problemas de drenagem foram levantados pela DREMAP bem como em oficinas de consulta à população de Florianópolis. Esse mapa é o resultado da plotagem dos problemas de drenagem levantados como etapa deste diagnóstico participativo. É acompanhado de um shapefile composto por dados vetoriais (pontos, linhas e polígonos) que descrevem por meio de atributos a localização geoespacial dos problemas de alagamentos e inundações urbanas associadas às falhas do sistema de drenagem, inundações ribeirinhas associadas à canalização e linearização dos cursos d’água, e ocupação indevida de áreas de várzea, e inundações costeira associadas a terrenos de baixa elevação e eventos de maré astronômica e astrológica.DREMAP, UFSC, Prefeitura Municipal de Florianópolis, Caixa Econômica Federa

    A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1

    Get PDF
    (1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine
    corecore